

JSW Steel Limited, Salem Works

International Conference on GREEN & SUSTAINABLE IRON MAKING 17,18 January, 2024

Project topic:

Blast Furnace process optimization for sustainable Iron Making"

JSW Steel Limited Salem Works

*Bhagyaraj D, S K Kalidhasan, HS Satalgoan, M Srinivasan, V Sudharsan, N Sai Rama Krishna.

1 of 28

Content of the presentation

Sl.No	Description	Slide. No
1	Overview of JSW Salem	3
2	JSW Steel Group Carbon reduction journey	6
3	JSW Steel Group Decarbonization Strategy	7
4	Process optimization in JSW Salem	8
5	Process optimization through Burden distribution	10
6	Process optimization through Burden preparation	16
7	Process optimization through Metal/Slag chemistry optimization	17
8	Process optimization through Cast house management	20
9	Process optimization through effective maintenance and reliability improvement	21
10	Fuel rate reduction through process optimization	25
11	JSW Salem - Fuel rate road map for FY 30	26
12	Journey towards Net Zero emission.	27

То

SMS

STOCK HOUSE

BLAST

FURNACE

GAS

TO CEMENT PLANT

BLOWER

Product Portfolio in JSW Salem

JSW Salem , part of 23 Billion USD JSW Group, is **India's largest integrated special steel plant** located in Salem, Tamilnadu with installed capacity of 1115 Million Tonnes Per Annum (MTPA). Our organization won the prestigious **DEMING AWARD** for TQM in 2019.

JSW Salem is recognized with 5 Star Rating an Sword of Honour by BSC for its OHS excellence in 2022.

AS Cast Product	Rolled Produc	ct (RP) – BRM	RP – BLM	I		
Rounds – 180 mm to 310 mm	Flats - 60 x 7 to 101 x 38 mm	Round Bars - 20.5 to 60 mm	Round Blooms -60 to 200 mm Dia		alem ct Users	BHARAT FORGE YOUR PROACTIVE PARTNER YOUR PROACTIVE PARTNER ECHJAY FORGUNGS LINITED
CAR CORDERS					Direc	
Billets/Blooms - 250, 280x370mm, 340x400 mm sq.	Coils - 5.5 to 32 mm	Hexagon - 20.5 and 32.5 mm	*RCS - 55 to 240 mm Square		Sers	
		A			End U	
						JSW Salem holds number one position in the Special steel long products market in India

JSW Salem works received various awards on Quality , Safety, CSR (Corporate Social Responsibility) and also from Customers and Government bodies. Some of them are presented below:

Awarded Year	Award	Awarded Title
2020	Best IMC Partner Award	First Prize
2021	National Safety Council Awards	Award of Honor
2021, 2022, 2023	IIM Sustainability Award-Alloy Steel Category	First Prize
2022	ICC National OH&S Awards	Platinum Award
2022	Green Tech Award for Environment Protection	Winner
2023	Golden Peacock OH&S Award	Winner

National / International level awards (Nos.)

FY	NCQC	ICQCC
2015-16	2	1
2016-17	10	1
2017-18	14	2
2018 -19	8	3
2019-20	7	3
2020-21	16	7
2021-22	13	10
2022-23	8	10
2023-24	-	3

M/s. Brakes India

Some of the customer awards received in recent years are shown below

Year	Customer	Awarded Details
FY19	FAG Schaffler	Best Development Support
FY19	Automotive Axles	Best in Agility
FY19	Kalyani Techno Forge	Best Quality Services
FY20	Timken	Alliance & Strategic Partner
FY20	Brakes India Ltd.	Performance Award
FY23	Timken	Alliance & Strategic Partner

NCQC – National Convention on Quality Concepts

ICQCC – International Convention on Quality Control Circle

Manufacturing Process

JSW Steel Group Carbon reduction journey

JSW Steel Decarbonisation Roadmap

48% of JSW Carbon reduction journey

Decarbonization Strategy

JSW SALEM

- JSW Steel Ltd., Salem works is an integrated special alloy steel plant with the capacity of 1.15 MTPA, located in Salem, Tamilnadu.
- JSW Salem has two mini blast furnaces (BFs) viz Blast Furnace #1 and Blast Furnace #2

Description	UoM	BF-I	BF-II		
Useful volume	m ³	402	640		
Working volume	m ³	345	550		
Technology		CERI,China	SINO steel,China		
Wind volume	Nm3/Hr	60000	95000		
Hot blast pressure	Kg/cm ²	1.90	2.80		
Top pressure	Kg/cm ²	1.0	1.50		
Tuyeres	No's	14	16		
No.of Tapholes	No's	Single	Single		
Hearth Diameter	mtr	5.1	6.15		
Working height	mtr	16.27	17.67		
Hot blast temperature	Deg C	1180	1180		
Oxygen enrichment	%	Max 5	Max 5		
No of stoves	Nos	3	4		
Stoves	Туре	Top Combustion	Top combustion		
Gas cleaning system	Туре	Wet type	Dry type		
Charging system	Туре	Skip	Skip		
Top charging	Туре	Bell Less Top	Bell Less Top		
Hearth refractory	Туре	Carbon hearth	Carbon hearth		
Furnace cooling system	Туре	Cast iron stave coolers	Cast iron stave coolers		
Hearth Bottom cooling	Туре	Natural draft	Water cooling		
Hearth cooling	Туре	Shower cooling	Stave coolers		
Main Runner	Туре	Pool with ramming mass	Pool with ramming mass		

JSW Salem pathway towards

"Green and sustainable Iron Making".

- Burden distribution.
- Burden preparatio
- Blast paramet control
- Mathematical modeling
- Process modelling
- Level 2 automati
- AI/ML model

Natural gas and Syngas injection

Use of Biomass reductant

Technology adoption

Reducing GHG emission

IBM Burden Mix: Sinter 60% and IOL 40%.

9 of 28

- Improving Burden distribution.
 1 a. Mathematical burden distribution model development.
 Mathematical model
- Burden distribution determines the distribution of raw material, the particle segregation degree and the ore-to-coke ratio
- Burden distribution affects the distribution of gas flow, quality and production of pig iron and the consumption of energy.

Mathematical Approach

Three distinct zones can be identified along the path of material movement.

- Material decent from charging bucket (hopper) to rotating chute
- Material movement in the rotating chute
- Material fall from chute tip to stock (burden) level

Figure: BLT trajectory model developed in excel format, by entering required chute angle, dumping level and rotation speed, the model enables to show the final trajectory width (material fall in stock line from furnace center) in mm. As calculation is inbuilt in the excel sheet:

Model validation

- Model validation done through physical trajectory test by using chalk line probe.
- The hallow trajectory pipe length was of 28.2 m, outer diameter 60 mm, inner diameter 52 mm, and the thickness of 28 mm as shown in fig.5.
- The trajectory pipe was inserted from above burden probe slot and a locking system was arranged for holding the pipe as shown in the figure 5.
- The trajectory pipe was painted with liquid chalk and dried up so that after the coke or ore charge the impressions made by the materials will be clearly visible.
- After charging measurement were taken to identify the material falling point and the band width

By using the mathematical model, the chute angle and band width are modified to improve the burden distribution in BF-1 and BF-2

BLAST FURNACE-2

	Before			Af	ter		
Ring No	Chute angle	Distance from furnace center in m	Rin g No	Chute angle	Distance from furnace center in m		
1	5.57	0.65	1	7.57	0.72		
2	13.57	1.06	2	15.57	1.241		
3	17.74	1.42	3	19.74	1.588		
4	20.78	1.66	4	22.78	1.823		
5	23.3	1.86	5	25.3	2.004		
6	25.48	2.01	6	27.48	2.150		
7	27.39	2.14	7	29.39	2.270		
			8	31.1	2.371		
 7 rir Max 27.3 	ngs used fc kimum chut 39 °	or distribution. e angle is	■ 8 ■ N ir	 8th rings used for distribution. Maximum chute angle increased to 31.1° 			

Benefits:

- Self slips reduced from 25 nos/month to <2/month</p>
- Fuel rate reduced by ~5 kg/thm
- Extra coke consumption reduced by 50%.
- Process stabilized and abnormality reduced.
- Productivity increased

1 b. Burden distribution pattern optimization by Design of Experiment

After studying the historical data and bench marking of various similar capacity blast furnaces, four (4 for coke and 4 for IBM) best burden distribution patterns are identified.

BLT Distribution		;	Sele	cted	BL	Г Ра	tterr	۱	Bur	den	wei	ght 9	⁄⁄ di	scha	irge	Total	
pistr	ittern	R1	R2	R3	R4	R5	R6	R7	R1	R2	R3	R4	R5	R6	R7	of rings	Logic for selection
	Α	1	0	0	1	1	1	2	17	0	0	17	17	17	33	6	Material distribution centre:17 %, Intermediate:51%, Periphery 33%
attern	В	1	0	0	1	1	1	3	14	0	0	14	14	14	43	7	Material distribution of center 14 %, Intermediate 42% and Periphery 43%
Coke F	С	1	0	0	1	1	2	2	14	0	0	14	14	29	29	7	Material distribution of center 14 %, Intermediate 57% and Periphery 29%
	D	1	0	0	1	2	1	2	14	0	0	14	29	14	29	7	Material distribution of center 14 %, Intermediate 57% and Periphery 29%
	Α	0	0	1	2	2	2	0	0	0	14	29	29	29	0	7	Higher in intermediate (IBM 72%)
attern	в	0	0	1	1	2	3	0	0	0	14	14	29	43	0	7	Higher in center (IBM 58%)
Ore P.	С	0	0	1	2	2	2	0	0	0	14	29	29	29	0	7	Even distribution (Bell type)
	D	0	0	1	2	2	3	0	0	0	13	25	25	38	0	8	Higher in center (IBM 63%)

Design of Experiments												
Factor code	Factors	UOM	L1	L2	L3	L4						
Α	Centre coke	Pattern	Coke Pattern A	Coke Pattern B	Coke Pattern C	Coke Pattern D						
В	Periphery coke	Pattern	IBM Pattern A	IBM Pattern B	IBM Pattern C	IBM Pattern D						
Optimum burden distribution pattern derived through DoE												

By using the mathematical model, the chute angle and band width are modified to improve the burden distribution in BF-1 and BF-2

	BLAST	EURI	NACE	-1		
		B	efore			
		BLT Ch	ute ang	les		
Dumping			RINC	G No.		
Level (m)	1	2	3	4	5	6
0.6	7.39	17.38	22.20	25.82	28.78	31.29
0.7	7.39	17.38	22.20	25.82	28.78	31.29
0.8	7.39	17.38	22.20	25.82	28.78	31.29
0.9	6.73	15.91	20.39	23.78	26.57	28.96
1.0	6.73	15.91	20.39	23.78	26.57	28.96
1.1	6.73	15.91	20.39	23.78	26.57	28.96
1.2	6.19	14.66	18.84	22.03	24.66	26.94
1.5	5.72	13.60	17.50	20.50	23.00	25.16
1.8	5.72	13.60	17.50	20.50	23.00	25.16
2.0	5.72	13.60	17.50	20.50	23.00	25.16

6 rings used for burden distribution. maximum chute angle in 31.29°

			Afte	r											
	BLT Chute angles														
Dumping	Dumping RING No.														
Level (m)	1	2	3	4	5	6	7								
0.8	5.10	15.10	19.75	23.15	25.85	28.10	30.00								
1.0	5.32	14.50	18.85	22.05	24.75	27.00	29.00								
1.2	5.72	14.19	18.32	21.46	24.05	26.28	28.20								
1.5	5.72	13.60	17.50	20.50	23.00	25.16	27.04								
1.8	4.79	12.97	16.82	19.74	22.17	24.28	26.10								
2.0	4.61	12.49	16.29	19.21	21.63	23.71	25.50								

7 rings used for burden distribution. maximum chute angle optimized to in 30° 1 b. Burden distribution pattern optimization by Design of Experiment

After studying the historical data and bench marking of various similar capacity blast furnaces, four (4 for coke and 4 for IBM) best burden distribution patterns are identified.

	BLT		Sele	cted	BL1	r Pat	ttern		Bur	den	wei	ght 9	% dis	scha	rge	Total					
Dist pa	ribution attern	R1	R2	R3	R4	R5	R6	R7	R1	R2	R3	R4	R5	R6	R7	numbe of rings	r Logic for	selection			
E	A	1	0	0	1	1	1	2	17	0	0	17	17	17	33	6	Material distributio	n centre:17 %, ,Periphery 33%			
atter	В	1	0	0	1	1	1	3	14	0	0	14	14	14	43	7	Material distributio	n of center 14 %, and Periphery 43%			
oke F	с	1	0	0	1	1	2	2	14	0	0	14	14	29	29	7	Material distributio	Material distribution of center 14 %, Intermediate 57% and Periphery 29%			
0	D	1	0	0	1	2	1	2	14	0	0	14	29	14	29	7	Material distribution of center 14 %, Intermediate 57% and Periphery 29%				
l u	Α	0	0	1	2	2	2	0	0	0	14	29	29	29	0	7	Higher in intermediate (IBM 72%)				
atte	В	0	0	1	1	2	3	0	0	0	14	14	29	43	0	7	Higher in center (IBM 58%)			
e B	С	0	0	1	2	2	2	0	0	0	14	29	29	29	0	7	Even distribution	(Bell type)			
ō	D	0	0	1	2	2	3	0	0	0	13	25	25	38	0	8	Higher in center (IBM 63%)			
									C	Desi	ign	of E	xpe	rim	ent	s					
Fa	actor ode	Fa	acto	ors		υo	м			L	1				L2		L3	L4			
	Α	Сс	oke		F	Patte	ttern Coke Pattern A Co			Co	ke	Patt	tern B	Coke Pattern C	Coke Pattern D						
	в	IB	м		F	Patte	ern		вм	Pat	tterr	ηA	IBM Pattern B IBM Pattern C I			IBM Pattern D					

Benefits:

Fuel rate reduced by ~3 kg/thm

• Extra coke consumption reduced by 50%.

Process stabilized and abnormality reduced.

Productivity increased

1c. a) LMG (Lower material gate) flow rate model development)

Diamond opening

Johanson equation (discharge rate through outlet for coarse particles)

Equation-1: $\dot{m} = \rho_b * A * \sqrt{\frac{B *_g}{2*(1-m)*\tan\theta}}$

Equation : Johanson equation (discharge rate through outlet for coarse particles)
M _ discharge discharge rate in kg/s
θ angle of hopper deg
ρ_b bulk density in kg/m3
g is the acceleration of gravity 9.81 ms-2

Flow rate model is developed for different type of LMG and flow rate curve derived from the model. Based on the flow rate curve LMG opening adjusted.

Benefits: Controlled flow rate of burden.

: Standardization of material flow rate

: Standardization of LMG type.

Model validated with physical measurement during shutdown.

1c. b) Acoustic sensor installation in burden tank.

- □ Planned discharge time is calculated based on the BLT chute rotation encoder and display shown in the SCADA
- Actual material discharge time is derived from Radar signal or by acoustic sensor of the burden tank.
- Time based LMG auto correction logic developed in house by using acoustic sensor readings and flow rate curves

Acoustic sensor installation in Burden tank

Benefits: Effective burden distribution

: Fuel rate reduction by 3 kg/thm

: Process stabilized and abnormality reduced.

BLT Discharge monitoring

				DISCHAR	IGE MONIT	ORING					
	IRON ORE (LAST DISCHARGE)					COKE (LAST DESCHARGE)					
	LMG POSITION	79.80		LMG POSITION	76.16						
	TOTAL OISCHA	RGE TIME (S)		1	4.66	TOTAL DECK	ARGE TIME (S)		5	4.72	
	TOTAL AS RES	PONSE TIME (S)		1	8.02	TOTAL AS RES	PONSE TIME (S		5	3.92	
	TOTAL LT RES	PONSE TIME (S)			59.37	TOTAL LT RES	PONSE TIME (3)		5	2.51	
10mm	LMG AUTO SP	(ORE)		and the	81.48	LING AUTO SP	(COKE)			0.42	
	RING	STATT	END N	SECS	COUNT	PENIC	STARTS	ENDIN	SECS (COUNT	
and the state of t	1000-00	0.00	0.00	0.00	0		0.00	0.00	0.00	•	
\-/	Seree .	0.00	0.00	0.00	0	A Men	0.00	50.85	0.00	•	
	Times .	0,00	73.38	0.00	•	Contract In	50.85	41.95	15.70	2	
	In the second second	73.38	69.08	15.92	2	Department of	41.95	34.29	6.97	1	
		69.05	51.17	13.93	2	The second second	34.29	27.56	6.97	1	
	and the second	51,17	29.00	14.18	2		27.58	19.74	7.22	1	
	e alter	29.00	0.00	10.15	2	0.004	19.74	11.86	7.34	1	
	1.000	0.00	0.00	0.00	0	1000	11.86	5.45	4.84	1	
		0.00	0.00	0.00	•	ENGS-	5.45	0.00	3.92	0	
		0.00	0.00	0.00	•	In the second second	0.00	0.00	0.00	0	

1d. Installation of Furnace top thermal image camera

Solution identified: Provision of infrared camera at blast

• Gas flow inside the furnace and proper burden (Raw material) distribution are major base parameters for maintaining the safety, process efficiency and other techno economics of the operation

Solution approach

Installation of infrared camera at furnace top for BLT monitoring

Visualizing and analyzing gas distribution, Equipment condition & water seepage from camera image

Using the information to optimize furnace burden distribution and PCI rate

Benefits: Effective burden distribution

- : Process stabilized and abnormality reduced.
- : Anomaly detection
- : Increased PCI rate by 5 kg/thm

Visual inspection during Shutdown Proper visibility of gas flow

Gas flow with temperature trend

2. Burden preparation.

- a) External screening of Iron Ore Lumps and Fluxes to reduced fines input in the furnace.
- b) Burden calculation model development by using MATLAB
- b) Increasing the SH screen screening area for effective screening of BF raw material
- c) Improved Yard management practices to ensure proper blending of Iron Ore lumps

Benefits: Fines input reduction

- : Eta CO improved by 1%.
- : Fuel rate reduction by 5 kg/thm
- : Process stabilized and abnormality reduced.
- : Effective burden control

3.Metal/slag chemistry optimization.

a) Development of Hot Metal Silicon prediction model

In house development of Hot metal silicon prediction model developed

- Model Developed by using MLR (Multiple regression) and NN (Neural network)
- **•** Data Processing done by using P test, F test and other statistical tools.

GUI (Graphical user interface) made by using VB.Net Plat form.

Benefits:

- 1. HM silicon prediction before 2 hours.
- 2. HM Silicon deviation reduced from 0.16 to 0.10
- 3. Fuel rate reduced by 2 kg/thm

		PARAMETERS REP	PORT		
oort Date :				Take Report	
		PCI Flow	0.000		
		Uptake Temp.	1 0 °c 2	0 °c 3	0 °c 4 0
d Blast Flow	0.000 //m ³ / Hr		Stove 1	Stove 2	Stove 3
d Blast Pressure	0.000 Kg / cm ²		Slove	Stove 2	Clove C
Blast Temp 1	0.000 °c	Stove Dome Temp.	0°c	0 [°] c	0 °c
Blast Temp 2	0.000 °c.	Stove Base Temp.	0 [°] c	0 [°] c	0 °c
Blast Pressure	0.000 Kg / cm ²	Stove Comp Air Flow	0 Nm ³ / Hr	0 lim ³ /H	0 Nm ³ / Hr
ske Pressure 1	0.000 Kg / cm ²	Stove Gas Flow	0 tim ³ / tir	0 Nm ³ / H	0 Nm ³ / Hr
ske Pressure 2	0.000 Kg / cm ²			-	
erential Pressure	0.000 Kg/cm ²		Flow	Temperature	Pressure
Stock Rod Level	0.000 m	HP Line	0.0 m ³ / Hr	0 °c	0.0 Kg/cm ²
nt Stock Rod Level	0.000 m	MP 1 Line	0.0 m ³ /Hr	0 °c	0.0 Kg/cm ³
Spray Flow	0.000 m ³ / Hr	MP 2 Line	0.0 m ³ /Hr	0 °c	0.0 Kg/cm ²
low	0.000 Hm ³ /Hr	BF CO 0 PPM GCP CO	0 PPM		
Im Flow	0.000 Kg/Hr		Today Y	ester Day	
With PCI	0.000 °c	Stove Gas Flow 373	65 mm ³ / day 787	206 NM ³ / day	Si prediction-Dat
Without PCI	0.000 °c	GCP Gas Flow 10299	99 MM ³ / day 2210	0459 MM 3/ day	Si 0.660
		02 Flow 304	8.7 HM ³ / day 136	92.2 MM ³ / day HN	Ti 0.057
1215.3 Hu? / hr Trend		CB Steam Flow 2309	1.8 1 to t day 650	197.6 IIM ³ / day Sir	1070.0
Today	Yester Day	TOT Steam Flow 490	73.6 1 kg / day 1013	ST A	nall Sinter 0.0
14647.9 mm ³	(day 31229.2 HM 3/ day	Stove com gas 36	1608 HM ³ / day 76	9567 mu ³	el rate 547.0
1316.9 m ³	hr 1301.2 mm ³ / hr	Flare gas 24:	2586 IIM ³ / day 56	5527 HM ³ / day	
10.56-05 AM	t71		100		

rEveryday	CFM - F	R&D VIJAYAN	AGAR /	AND BI	#1 Sa	ilem							
revious Titanium (%)	0.057												
Dxygen Flow (Nm3/min)	44.88												
team (T/hr)	2	Actual Silicon (%) 0.66											
Cold Blast Volume (Nm3/hr)	56758.68	Predicted Silicon (%) 0.78											
Cold Blast Pressure (kg/cm2)	2.24												
lot Blast Pressure (kg/cm2)	2.18	1.9		_	_	• Si	in HM		Predict	ed Si in H	M		
op Pressure (kg/cm2)	0.91	1.7											
lot Blast Temp (Deg C)	1177.15	1.5											
CAFT (Deg C)	2165.92	1.3-	-										
Uptake Temp1 (Deg C)	160.1	0.9											
Small Sinter (Kg'thm)	1070	0.7		•	•	•	•	•	•	•	•		
Burden Fuel rate (Kg/thm)	547	0.5											
PLAN AF MAN	0	0.3	-		-					1214	-		

b) Implementation of online Hot metal temperature measurement.

Solution identified: Installation of Hot Metal temperature measurement

Installation of online pyrometer at cast house to measure online hot metal temperature during casting

Integration of Hot metal temperature in L1 PLC system

Exporting Hot metal temperature to L2 automation system for analysis

1 - 1 153 112 TAKES TEMP 313 18 251 CIL 6.83 YESTERDAY TODAY OF SKIPS NOT OF CHARGES NO OF SKEPS PART OF CHARLES 100 241 48.2 235 470 144 238 47.6 28 EL-STHUFT HOUR 237 47.4 0 0.0 20 C-SHIFT 379 75.8 716 143 1044030 A.08 m3/hr TEMEN THE & FLOW F2B deg.C 35 36 35 34 34 35 2.5 35 37 32 35 36 35 36 3.55 12 54 PRESSIARE FLOW PRESSURI FLOW SLT. URNACE COOLING kan/cout-3710 kas/crn2 WATER 2.23 2.01 3.95 ... WATER 1316 T/Hr LEDIUM PRESSURE# 3.97 - NITROGEN Nen3/fw 5.64 1311 DIUM PRESSURE#2 35 14.90 GEAR BOX TEMP deci.c 406 .--IGH PRESSURE LMG CURRENT 0.00 477 5.57 OVE COOLING

Benefits:

- **1.** Continues Hot metal temperature monitoring.
- 2. HM temperature standard deviation reduced.
- 3. Abnormality reduction

3c. Other optimization in metal and slag chemistry

a) Optimization of Hot metal Mn% (0.25 to 0.40%) for effective coke/coal char gasification in the BF hearth.

Mn-containing materials expands the possibilities of carbon gasification in the lower part of hearth where is experiencing a deficiency of bound oxygen for reaction with crashed particles of coke (coke debris) and PCI unburnt char:

MnO + C = Mn + CO - 288.29 MJ, (5) therefore, due to arrival of additional oxygen in form of (MnO), washing effect is enhanced.

b) Slag MgO and Al2O3 optimization (Slag MgO optimized to 7.5 to 9.5 based on Al2O3% (<20%) By studying the slag characteristics.

c) Monitoring the Mn partition, taking necessary action based on data to improve the thermal stability of BF hearth.

d) Monitoring the deadman cleanliness index (DCI), taking necessary action based on data to improve the thermal stability of BF hearth

e) Alkali and ZnO flushing management with 100% flushing.

f) Sinter Basicity optimized to improve the process stability

4.Casting practice management.

Tapping practice improvement by

- Optimizing the Tap hole clay quality.
- Various trails conducting for improvement of tap hole clay
- Zero non dry cast by improving the hot metal handling capability.
- Drill bit Design optimization of improve smooth drilling of tap hole.
- Reduction in close to open time.
- Selecting suitable drill bit size based on the condition.
- Titanium and carbon paste application to improve the tap hole refractoriness.
- Effective runner maintenance to reduce casting delay

5.Effective Preventive maintenance and Reliability improvement practices Objectives – BF Maintenance

Maintenance Objective:

- > To minimize the impact of unplanned events on safety, the environment, and business profitability
- Higher Equipment availability at optimum maintenance cost

Improving Equipment reliability – BF Maintenance

Enablers of Improving Equipment reliability in BF Maintenance

SL No	Initiation	Actions taken
1	Zero breakdown strategy	# All A,B & C category equipment are mapped for zero breakdowns for a period of 36 months back from the point of analysis # Projects are taken based on the compliance of critical equipment in to Zero breakdown category
2	Adaption of Criticality assessment	 # Based on criticality assessment, prioritizing of poor performing critical equipment is done # Projects are taken based on the necessity of improvement in MTTR / MTBF to reduce the impact and frequency of equipment failures # The impact scale of our criticality assessment has been narrowed down by 10 times since FY 2015 # The frequency scale of our criticality assessment has been narrowed down by 4 times since FY 2015
3	Adaption of Equipment Failure Mode Effect Analysis (EFMEA)	# Failure modes are mapped against all levels of Main equipment, Sub equipment and BOM of critical equipment # RPN for Each failure modes are weighed by product of weightages of Severity X Occurrence X Detectability # Projects are taken on failure modes having Top 3 RPN values at any time for critical equipment
4	Adaption of Trouble shooting tools	# FTA (Fault Tree Analysis) has been adapted for critical equipment # Fault finding made quicker to ensure better MTTR # Improvements and revisions are made periodically and against failures
5	Daily trainings / Interactions for worker level manpower	 # Daily trainings / Interactions are made with worker level associates / employess for the sake of their improvement in maintenance on the following 1. Technical aspects of critical equipment 2. Safety aspects of area/equipment specific maintenance activities 3. Trouble shooting of critical equipment failure 4. Root cause analysis of failures in critical equipment

24 01 28

Fuel rate reduction through Various Process control activities

Fuel rate reduction through process optimization

* Through process optimization, fuel rate was reduced from 570 to 550 Kg/THM (Reduction : 20 Kg/THM) * Productivity was increased from 3.4 to 3.6 t/m3/day and process stability improved

JSW Salem Fuel Rate | Roadmap for BF

1 Level 2 Automation (Contd)	-2.5						-2.5	
2 Hot metal Si Prediction model (Contd)	-2						-2	
3 Online heat flux monitoring (Contd)	-2						-2	
4 Increase in HBT from 1180- 1250 deg C			-4.2	-2.8			-7	
5 Natural gas injection			-10.8	-7.2			-18	
6 Higher agglomerated burden				-14			-14	
7 Slag volume reduction (360 -340 Kg/THM)				-5			-5	
8 Steam reduction (30-20 gm/Nm3)				-6			-6	
9 Green H2 introduction (15 Kg/THM)					-10.1		-10.1	
10 Coke dry Quenching						-4.2	-4.2	
Total Reduction								

26 of 28

JOURNEY TOWARDS NET ZERO EMISSION

Fuel rate reduction FY50 - Net Zero

27 of 28

