

Presents

International Conference on

GREEN & SUSTAINABLE IRON MAKING

January 17 – 18, 2024

Advanced and Reliable Refractory Solutions for a Green and Sustainable Approach to Blast Furnace Iron Production

Giuliano Copetti – RHI Magnesita – Alumina Monolithic Solutions

TATA STEEL #WeAlsoMakeTomorrow

Introduction

The modern steelmaking process is subject to significant changes, moving towards the **Green and Sustainable Steel Production**.

Almost all steelmakers worldwide have already started projects to:

- decrease the direct and indirect CO2 emissions of their processes and products
- improve their energy efficiency accordingly
- reduce the general environmental impact of their activity.

Examples of the new emerging process routes are application of hydrogen gas as alternative reduction agent, direct reduction of iron ores (DRI), Carbon Capture and Utilization (CCU), and continuous improvements of raw materials.

#WeAlsoMakeTomorrow

Introduction

Besides important mid-term and long-term projects with significant project resources and investments, it is also important to consider existing technologies and products able to move in the same direction, but with a lower CAPEX (if no one at all), and potentially immediate effect.

In this scenario, the approach to Total Cost Ownership (TCO) is of increasing importance for the collaboration between the steel plant management and refractory suppliers.

From our side, in this presentation we will focus on 4 solutions, already existing and ready to be put in place to take the first important step ahead:

Our immediate solutions

Green Taphole Clay

to increase the health conditions of the BF operators and reduce the environmental impact

Castables with high content of recycled raw materials – our "GreenLine" products

to reduce the Carbon Footprint

LCS castables for BF runners

to reduce the energy consumption during application

Blast Furnace Hearth Protection – our "Modular Hearth Shield" concept

for the BF life prolongation and energy saving

1 Green Taphole Clay

- 2 «GreenLine» castables
- 3 LCS castables for BF runners
- 4 Modular Hearth Shield

TATA STEEL #WeAlsoMakeTomorrow

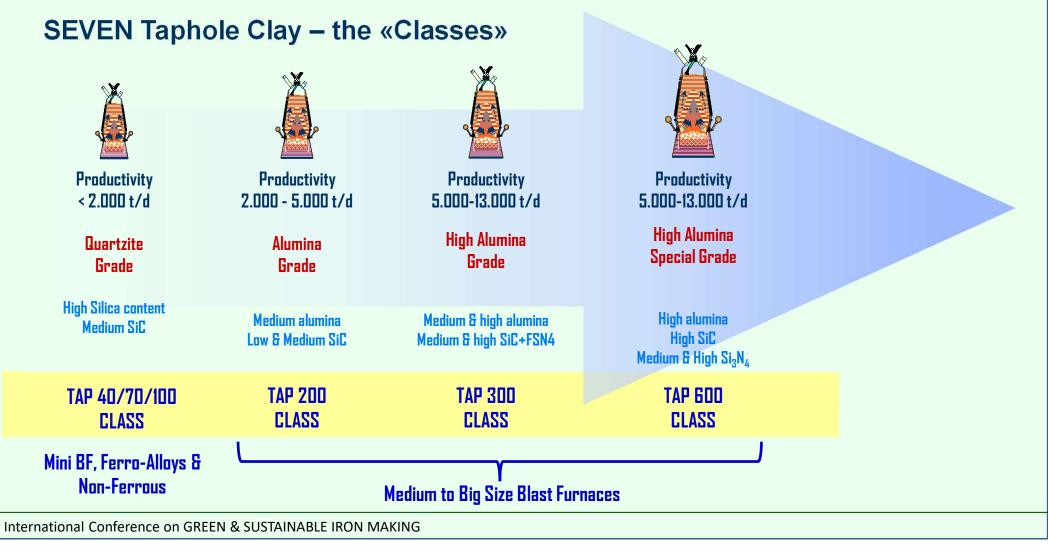
THC - Actual Market Tendency

Since many years, EU Regulations are banning from the market any product containing PAHs (Polycyclic Aromatic Hydrocarbons) over the strict given concentration limits.

Similar regulations and guidelines are starting to spread all over the world, together with an increasing attention on health-related issues and growing consciousness over environmental protection.

This means that...

there is a deadline in sight for the utilization of tar-bonded taphole clay, that everybody sooner or later will have to cope with...



SEVEN Taphole Clay - Technical Philosophy

	Chemistry	Based on High Alumina / SiC / Si3N4 / C (Quarzite-based for low grades only)
	Physics	Expansion controlled mix
	Binding	100% Resin bonded / Thermosetting / Ceramic
	Healthy	Phenol free / Lowest PAH content ever (including benzo-α-pyrene) Environmentally and health friendly
	Character	Fast curing / Adhesion / Corrosion resistance / Stability / Consistency
	Performance	Long cast duration. Long and stable tap-hole length
	Storage	0-35°C / No direct sunlight / No heat exposure / No rain exposition Temperature monitoring during transportation
	Use	2,0-6,0 liter/sec; 120-240 bar plugging (1750-3500 psi) 10-120 liter injected per plug
	Plasticity	Wide range of workability index [17-45 % at 35°C (95 F) after ageing]
	Packaging	5-6 kg plastic wrapped blocks in cardboard box / ergonomic access to slugs
	Critical factors	Dwell time 3-7 minutes Adjustable sensitivity to heat exposure of the mudgun
	Shelf life	6 months (minimum)
Interi	national Conference on G	REEN & SUSTAINABLE IRON MAKING

WeAlsoMakeTomorrow

SEVEN THC – Product Portfolio

Product name	Type of product	Main RM	Max Grain Size	AI2O3	Fe2O3	SiC + C	SiO2	Fe2O3 + Si3N4	BD @800	BD @1200	CCS @800	CCS @1200	AP @800	AP @1200	PLC @800
			mm	%	%	%	%	%	g/cm3	g/cm3	MPa	MPa	%	%	\$
Seven Tap 600 E	Tar free THC	BFA, SiC	3	58,4		26,8	7,5	4,6	2,3	2,29	12	11	27	28	-0,25
Seven Tap 600	Tar free THC	BFA, SiC	3	61,4		26,2	7,3	4,9	2,3	2,29	12	11	27	28	-0,25
Seven Tap 375 E	Tar free THC	BFA, SiC	3	39,6		28,7	14,3	8,6	2,27	2,23	11	14	25	26	-0,3
Seven Tap 375	Tar free THC	BFA, SiC	3	39,1		28,2	14,1	8,9	2,28	2,21	11	13	25	26	
Seven Tap 300 E	Tar free THC	BFA, SiC	3	43,2		28	15,7	4,7	2,18	2,16	10	12	26	27	-0,3
Seven Tap 300	Tar free THC	BFA, SiC	3	43,5		27,4	15,5	5	2,22	2,18	10	13	25	26	-0,3
Seven Tap 200	Tar free THC	BFA, Baux, SiC	3	48,8	0,8	26,7	17,6		2,18	2,15	10	12	26	27	-0,25
Seven Tap 190 E	Tar free THC	BFA, SiC	3	39,9	0,8	24,7	24,1		2,16	2,14	10	12	26	27	-0,25
Seven Tap 190	Tar free THC	BFA, SiC	3	40,2	0,8	24,1	23,9		2,17	2,14	9	11	26	27	-0,25
Seven Tap 100	Tar free THC	High Silica RM, SiC	3	2,3	0,3	21,9	73,6		1,84	1,83	11	10	26	27	0,15
Seven Tap 70	Tar free THC	High Silica RM, SiC	3	2,4	0,3	15,1	80,5		1,81	1,8	11	10	26	27	0,15
Seven Tap 40	Tar free THC	High Silica RM	3	2,4	0,3		86,9		1,78	1,77	11	10	26	27	0,15
Seven Tap 055 PL	Tar free THC	BFA, SiC	1	38,1		33,5	14,9	6,6	2,13	2,12	7	10	29	30	-0,3

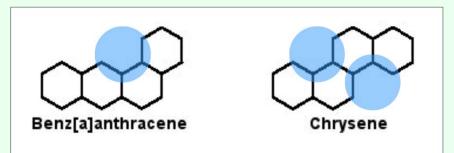
The PAHs issue

PAHs (Polycyclic Aromatic Hydrocarbons) are a large group of chemical compounds:

- entirely made by Carbon and Hydrogen
- with 2 or more fused aromatic rings

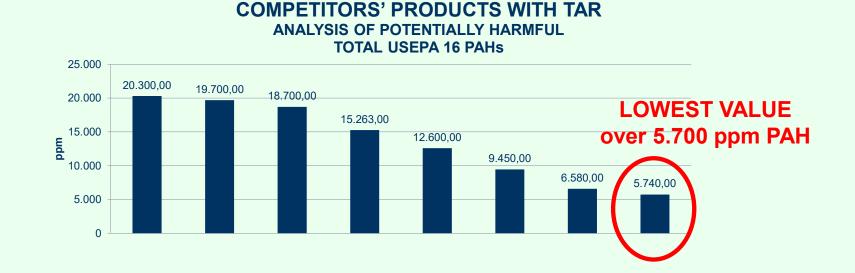
The biggest problem among PAHs is represented by the **highly carcinogenic benzo(a)pyrene**.

Table right: names and structures of PAHs frequently monitored according to recommendations by:


- ✓ the EU Scientific Committee for Food (SCF),
- ✓ the European Union (EU),
- ✓ the USA Environmental Protection Agency (EPA).

List	Common Name	Structure	List	Common Name	Structure
EPA, SCF, EU	Benzo[a] pyrene	<u> </u>	EPA, SCF, EU	Dibenz[a,h] anthracene	ĝaĝ
EPA	Acenaphthene	\odot	EU+SCF	Dibenzo [a,e]pyrene	
EPA	Acenaphthylene		EU+SCF	Dibenzo [a,h]pyrene	88
EPA	Anthracene	∞	EU+SCF	Dibenzo [a,/]pyrene	33
EPA, SCF, EU	Benz[a] anthracene	ಯ್	EU+SCF	Dibenzo [a,/]pyrene	ŝ
EPA, SCF, EU	Benzo[b] fluoranthene		EPA	Fluoranthene	
SCF, EU	Benzo[/] fluoranthene	83	EPA	Fluorene	\mathfrak{B}
EPA, SCF, EU	Benzo[k] fluoranthene	∞	EPA, SCF, EU	Indeno[1,2,3- cd]pyrene	33
EU	Benzo[c]fluorene	020	EU+SCF	5-Methyl chrysene	ŝ
EPA, SCF, EU	Benzo[ghi] perylene	æ	EPA	Naphthalene	\otimes
EPA, SCF, EU	Chrysene	3	EPA	Phenanthrene	₩.
SCF, EU	Cyclopenta [cd]pyrene		EPA	Pyrene	8

The PAHs issue


- PAHs are characterized by high biochemical reactivity, deriving from the special organization of the C atoms present in the so-called "bay-region" at benzene-rings ramifications, which is a feature common to each of the PAH.
- PAHs are highly carcinogenic compounds, due to their ability to form adducts with DNA.

Picture left: Examples of "bay-regions" location for different PAH compounds

PAH levels for TAR-bonded Taphole Clay

Polycyclic Aromatic Hydrocarbons – Total USEPA 16 PAH [mg/kg]

PAH levels of our Taphole Clay

Reasons to choose SEVEN Taphole Clay:

- Most eco-friendly tap hole clay worldwide ever, without any coal tar or pitch inside
- 100% Resin-bonded for a complete reduction of all the potentially noxious components
- **Highly performing material**. With our resin-bonded THC we can now reach the same technical performance of any Tar-bonded THC.
- **High consistency** during the application. This is steadily verified by means of statistical analysis of casting data taken during THC trial or during standard application of our clay.
- Easy to inject → Reduced mechanical stress on the mudgun → Cost saving.
- Limited dwell time → Reduced thermal stress on the mudgun → Cost saving.
- Easy to drill → Not more than 1 drill bit necessary per each cast → Cost saving.
- Total absence of smell. Very appreciated by the operators. And the Unions.
- Ergonomic packaging. Very appreciated by the operators.

TATA STEEL # WeAlsoMakeTomorrow

THC References

COUNTRY	COMPANY	PLANT	BLAST FURNACE	WORKING VOLUME [m3]	HEARTH DIAMETER [m]	DAILY PRODUCTION [tons]	PRODUCT NAME
			А	3.126	12,0	8.200	Seven TAP 300/325
		Linz		00	,•	0.200	Seven TAP 325
			5	1.258	8,0	2.800	Seven TAP 300 E
AUSTRIA	Voest Alpine		6		0,0	2.000	
			1	1.205	8,0	1.900	Seven TAP 200
		Donawitz	1	1.200	0,0		Seven TAP 100
			4	1.343	8,0	2.100	Seven TAP 200/100
	Salzgitter AG	Salzgitter	A	2.410	11,2	6.000	TAP 300 family
		Oalzyittei	В	2.530	11,2	6.000	TAP 300 family
	AM Eisenhüttenstadt	Eisenhüttenstadt	5A	1.760	9,8	5.500	TAP 300 family
GERMANY	DK Recycling	Duisburg	3	580	6,5	1.000	TAP 100 AD
	НКМ	Duisburg	В	2.500	10,6	7.600	TAP 300 family
	Rogesa	Dillingen	4	2.358	11,2	6.400	TAP 310 E (300 E/300)
			5	2.580	12,0	6.800	TAP 310 E (300 E/300)
AUSTRALIA	Liberty Steel Whyalla	Whyalla	2	1.882	9,6	3.000	TAP 300 E
FRANCE	Saint Gobain PAM	Pont - a -	3	400	6,0	1.000	TAP 100 family
	ADI Taranto	Taranto	1+2+4	2.026	10,6	5.400	Seven TAP 300 / 300 E
ITALY	Acciaierie Arvedi	Trieste	3	420	6,2	1.350	Seven TAP 200/190 AD
CZECH	Trinec	Trinec	4+6	1.333	8,0	3.200	Seven TAP 300 E
REPUBLIC	Liberty Steel	Ostrava	3	1.333	8,0	3.000	Seven TAP 300 E
SWEDEN	SSAB	Lulea	3	2.540	11,4	6.800	Seven TAP 375 E
CHINA	Ansteel	Anshan	10	3.178	12,2	7.000	Seven TAP 300

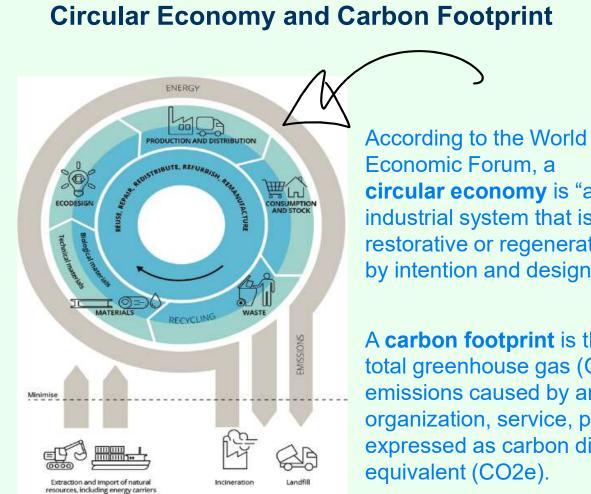
THC References

COUNTRY	COMPANY	PLANT	BLAST FURNACE	WORKING VOLUME [m3]	HEARTH DIAMETER [m]	DAILY PRODUCTION [tons]	PRODUCT NAME
			3	2.000	10,0	4.400	Seven TAP 300
			4	2.000	10,0	6.000	Seven TAP 300
RUSSIA	NLMK	Lipetsk	5	3.200	12,0	9.000	Seven TAP 300
			6	3.200	12,0	9.000	Seven TAP 300
			7	4.400	13,1	12.500	Seven TAP 300
			1	1.033	7,7	3.100	Seven TAP 300
			2	1.033	7,7	2.800	Seven TAP 300
RUSSIA	Severstal	Cherepovets	3	3.000	11,5	8.500	Seven TAP 304
			4	2.700	11,0	7.000	Seven TAP 375
			5	5.550	15,0	13.000	Seven TAP 375 E
	EVRAZ - NTMK	Nizhny Tagil	6+7	2.200	11,8	6.500	Seven TAP 600
	EVRAZ - ZSMK MMK		1	3.000	11,6	7.000	Seven TAP 300
		Novokuznetsk	2	2.000	9,8	5.400	Seven TAP 300
RUSSIA			3 3.000 11,6 6.500	6.500	Seven TAP 300		
		Magnitogorsk	9+10	2.014	10,0	5.000	Seven TAP 200/ 200 KAZ
			1+2+4+6+7	1.371	8,4	3.800	Seven TAP 200 KAZ
	Metalloinvest - Ural Steel		1	1.007	7,5	2.150	Seven TAP 180
		Novotroitsk	2	1.007	7,5	2.150	Seven TAP 200
			3	1.513	9,0	3.100	Seven TAP 200
RUSSIA	Tula da anua d	Tida	3	2.200	9,8	4.250	Seven TAP 200/ 300
	Tulachermet	Tula	1	1.386	8,6	2.800	Seven TAP 190 KAZ
	Mechel	Cheliabinsk	1	2.034	10,0	3.300	Seven TAP 200 KAZ
	KMZ	Kosaya Gora	3	2.200	9,8	3.000	Seven TAP 150
			1	1.845	10,0	4.000	Seven TAP 200/ 190
		Kasisa	2	2.050	11,0	4.500	Seven TAP 200
Slovakia	US Steel	Kosice	2	4.045	40.0	4.000	Seven TAP 190
			3	1.845	10,0	4.000	Seven TAP 200

THC References

COUNTRY	COMPANY	PLANT	BLAST FURNACE	WORKING VOLUME [m3]	HEARTH DIAMETER [m]	DAILY PRODUCTION [tons]	PRODUCT NAME
			2	1.450	8,5	3.500	Seven TAP 200/ 260
	lsdemir Celik	Iskenderun	3	2.100	10,2	5.500	Seven TAP 200/ 300/ 260
			4	2.500	11,8	7.000	Seven TAP 300/ 260 Seven TAP 055PL
TURKEY		–	1	1.850	10,0	5.200	Seven TAP 300
	Erdemir Celik	Eregli	2	1.707	9,7	4.500	Seven TAP 300
	Kardemir Celik	Karabuk	5	1.650	9,4	3.500	Seven TAP 200 Seven TAP 300
	EVRAZ - Petrovska		2	1.200	7,9	2.400	Seven TAP 200
	Zavod	Dnepropetrovsk	3	1.200	7,9	2.500	Seven TAP 200 Dnep A1
	Metinvest Enakievo		1	1.200	7,9	2.200 3.500	Seven TAP 300
UKRAINE	Zavod	Enakievo	3	1.700	8,4		Seven TAP 300
	Zaporovhstal	Zaporozye	3	1.500	-	2.500	Seven TAP 200
	Azovstal	Mariupol	2	1.719	-	2.300	Seven TAP 200 Seven TAP 055PL
	AM Dofasco		3	963	6,6	2.260	Seven TAP 200
CANADA		Hamilton	2	1.062	7,3	2.450	Seven TAP 300
	Algoma Steel	Saint - Sault Marie	7	2.477	10,7	7.570	Seven TAP 300
		Monclova,	5	2.199	11,2	7.200	Seven TAP 300
MEXICO	AHMSA	Coahuila	6	1.392	8,4	4.430	Seven TAP 300
		Edgar Thomson	1	1.541	8,8	3.200	Seven TAP 300
	US Steel	Granite City	В	1.402	7,8	4.200	Seven TAP 300 E
USA		Gary	4	1.496	8,8	3.500	Seven TAP 300 E
	Cleveland Cliffs	Dearborn	С	1.797	9,2	6.200	Seven TAP 300
		Indiana Harbor	7	4.079	13,7	10.000	Seven TAP 375 E

THC References


COUNTRY	COMPANY	PLANT	BLAST FURNACE	WORKING VOLUME [m3]	HEARTH DIAMETER [m]	DAILY PRODUCTION [tons]	PRODUCT NAME	
SERBIA	HBIS	Smederevo	1+2	1.455	9,0	3.000	Seven TAP 200 E AD	
BOSNIA	AM ZENICA	Zenica	4	2.400	10,0	3.300	Seven TAP 200/ 190	
KAZAKHSTAN	AM TEMIRTAU	Temirtau	2	2.500	10,0	3.300	Seven TAP 101 KAZ	
RAZANISTAN		Termitau	3	3.800	12,0	5.400	Seven TAP 101 KAZ	
KAZAKHSTAN	KAZCHROME	ZCHROME Aktobe 1-2-3-4 65 MW EAF for Ferrochromit Produc				Production	Seven TAP 101 KAZ	
ROMANIA	Liberty Steel	Galati	5	3.120	12,0	6.000	Seven TAP 300 E	
	ARCELOR MITTAL		Vonderhillnerk	D	2.162	10,2	4.100	Seven TAP 190
SOUTH AFRICA		Vanderbijlpark	С	1.626	9,6	3.200	Seven TAP 190	
		Scunthorpe	Queen Anne	1.580	9,0	4.000	Seven TAP 300 E	
GREAT BRITAIN	BRITISH STEEL		Queen Victoria	1.580	9,0	4.000	Seven TAP 300 E	
BELGIUM	ARCELOR MITTAL	Gent - Zelzate	В	2.550	10,5	7.500	Seven TAP 375 E	


- **1** Green Taphole Clay
- 2 «GreenLine» castables
- 3 LCS castables for BF runners
- 4 Modular Hearth Shield

circular economy is "an industrial system that is restorative or regenerative by intention and design."

A carbon footprint is the total greenhouse gas (GHG) emissions caused by an individual, event, organization, service, place or product, expressed as carbon dioxide

Definitions

Scope 1 Emissions

Direct GHG emissions that derive from sources owned or directly controlled by the organization.

GREENHOUSE GAS EMISSION

✓ NO CO₂ emission
 ✓ NO INDUSTRIAL LIQUID WASTE

Definitions

Scope 2 Emissions

Indirect GHG emissions associated with the purchase and utilization of the energy by the organization.

- PRODUCING GREEN ENERGY BY SOLAR ROOF
 From the very beginning we have been focused on green energy and enviromentally friendly approach
- ✓ PURCHASING ELECTRICITY FROM FOSSIL FREE SOURCES

Definitions

Scope 3 Emissions

All other indirect GHG emissions, upstream and downstream of the organization

- proven and reliable suppliers of raw materials
- managing of logistic operations due to our strategic position
- ✓ REUSE pallets REDUCE transportation RECYCLE cardboard & paper

TATA STEEL #WeAlsoMakeTomorrow

What is GreenLine?

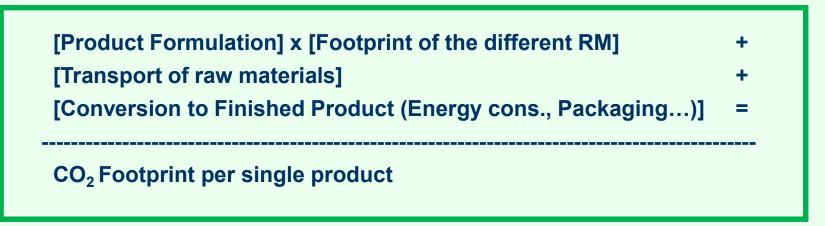
- The production of castable DOES NOT NEED ANY HEATING nor ANY SINTERING PROCESS.
- □ Highest technically possible rate of spent raw materials from reliable and proven sources
- Advanced production line optimization to secure carbon neutral footprint and NO EMISSION.
- □ Features of the castable kept as close as possible to the formulation with virgin raw materials.
- Eco-sustainable approach.

WeAlsoMakeTomorrow # Seven GreenLine Data Sheet Seven GL Cast 59 ND General Information Type of product Type of band Machiner recommended temperatur ri Cestatik Hydraulic 1600°C Main new material Andalastite Meterial required (kgreet 2430 Meximum grain size one \$,5.7,5% Water required for installatio statation method Vibrating casting Chamical properties according to EN ISO 1927-3 Tenical (%) Last (%) nn 55.0 max 1,4 90x 37 Physical properties according to EN ISO 1927-5, 1927-6, 1927-8 1200 0 2.00 2.45 Bulk density (giorf) 0.46 Cold Crusting strength (MPs) Apparent Porcelly (%) 70 10 Penn Linear Change (%) 4.18 0.26 -0.40 1.72 Thermal Cond. (White) RTE at 1000°C (%) after Bridg at 100 0.65 EN 293-19 ISCI 18282/ASTM CTI +10 Abrackin after firing at 815°C (cmf) Other properties Packaging State of delivery Paper bogs or Big bags Dry Shaff Me (slorage in rity conditions) E monthe HG 62A I HC 91-62 Installation guideline / Healing-up curve In order to preserve the quarty of the product it is strictly recommended to respect the general guidelines (Seve tending and application of the material. In case of eco-compliance with these guidelines, the product may notife inner application and performance. The locality while it the descent 101.200 #baingGREEN ex several rectories com SEVEN GREEN GUN 32 RMZ 30.04.22

International Conference on GREEN & SUSTAINABLE IRON MAKING

GreenLine – Key Facts

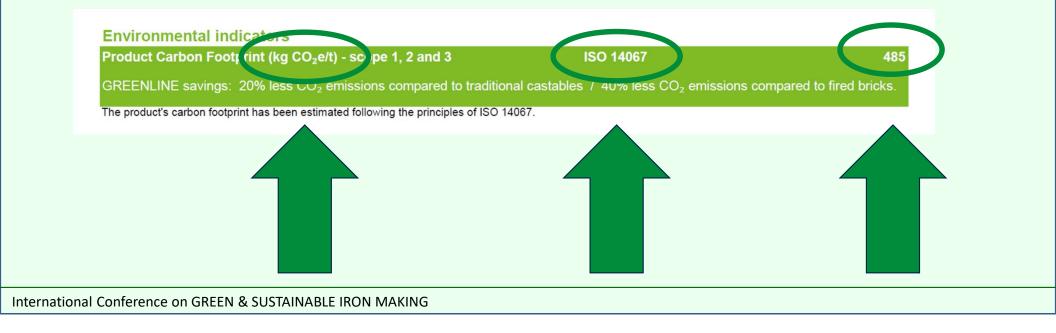
- 20+ developed GREEN PRODUCTS and counting
- □ 40% LESS CO₂ EMISSIONS vs Fired **Bricks**
- □ 20% LESS CO₂ EMISSIONS vs **Conventional Castables**
- □ 15 20% forecast REDUCTION OF NATURAL RESOURCES CONSUMPTION


TATA STEEL

Calculation procedure...

The Carbon Footprint calculation method has been defined based on the **International Standard ISO 14067-2018**.

The simplified formula looks like:



... and declaration of the results

The Carbon Footprint calculation results are shown on each Technical Data Sheet, expressed in terms of

"kg of equivalent CO2 per ton of castable":

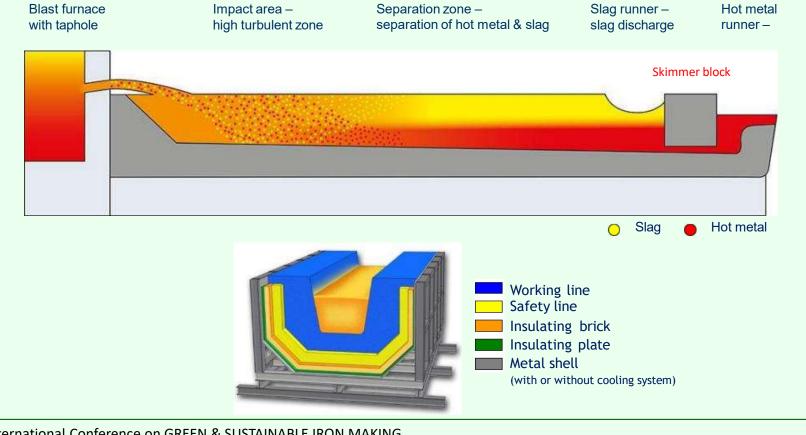
Metallurgy Materials Engineering

GreenLine: portfolio examples

Seven GL **Cast** 35 RMZ 5 Seven GL **Cast** 39 RM 4 Seven GL **Cast** 40 RM 4 Seven GL **Cast** 50 NM 5 Seven GL **Cast** 57 RM 5 Seven GL **Cast** 59 ND 5 Seven GL **Cast** 60 RM 5 Seven GL **Cast** 77 RX 5 Seven GL **Cast** 80 NX 5 Seven GL Ram 2565 KX Seven GL D Ram 2565 KX

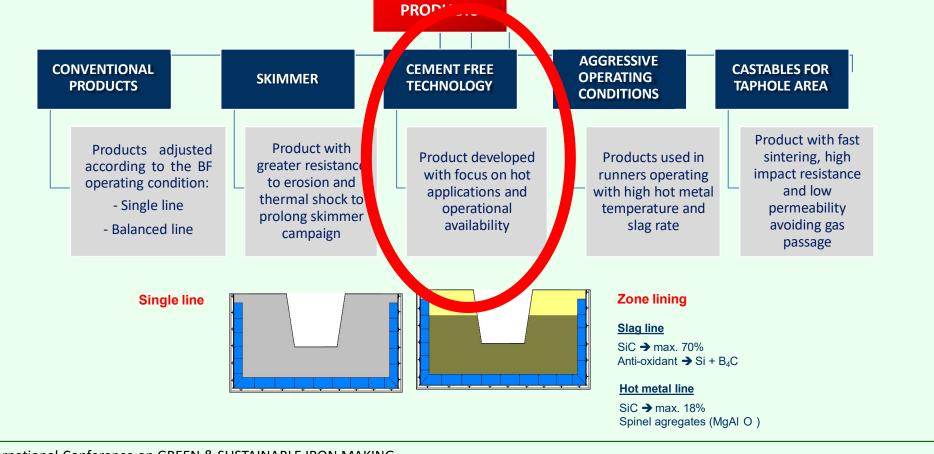
Seven GL **Gun** 35 RMZ 5 Seven GL **Gun** 75 RX 5 Seven GL **Gun** 2363 NX

Seven GL **Trow** 45 RM 5 -6 Seven GL **Trow** 80 RX 5 -6

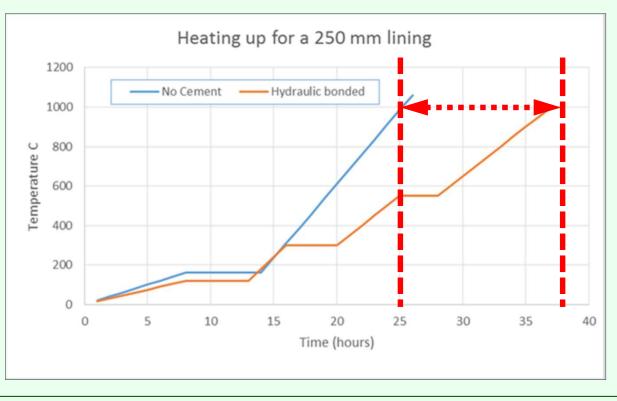


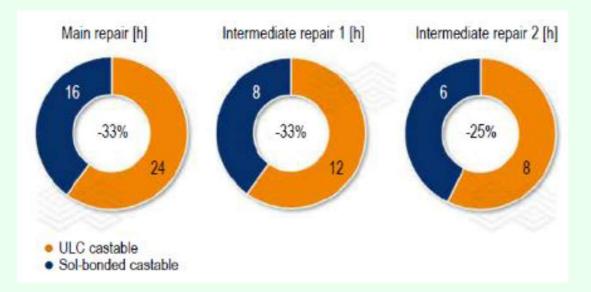
- 1 Green Taphole Clay
- 2 «GreenLine» castables
- **3 LCS castable for BF runners**
- 4 Modular Hearth Shield

TATA STEEL #WeAlsoMakeTomorrow


BF casthouse - the application area

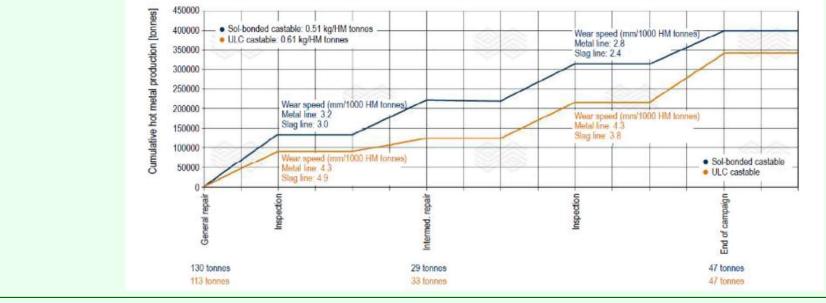
TATA STEEL # WeAlsoMakeTomorrow


Product category overview


Heating-up: hydraulic bonded vs LCS castable

Compared to standard ULC (ultra-low cement) castables, a drastic reduction in the drying/heatup curve was implemented for the sol-bonded castables in working lining application.

Heating-up: hydraulic bonded vs LCS castable


The sol-bonded refractory castable technology demonstrates higher explosion resistance when exposed to fast heating curves, due to the higher permeability and absence of the hydraulic phases present in the ULC castables.

Performance comparison

The performance of ULC and sol-bonded castable technologies were compared in main runner working lining applications (with an intermediate shotcrete repair carried out in both cases).

The wear speed measured at the end of the campaigns was significantly lower with solbonded castables, and the performance accordingly higher.

TATA STEEL # WeAlsoMakeTomorrow

LCS castables – a summarization

PROs

- No low melting point CaO-SiO2-Al2O3 phases in the matrix
- Superior thermal shock resistance and lining life
- Improved high temperature properties (RUL, HMOR)
- Higher permeability to gases
- No chemical entrapped water
- Energy and Time saving during dry out

CONTRAs

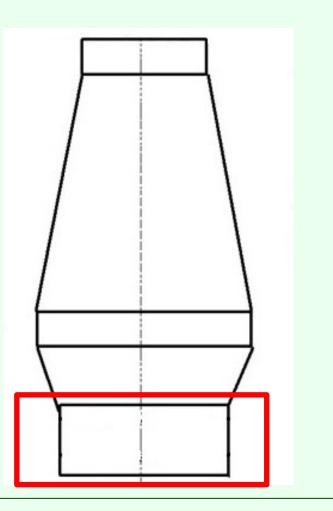
- Low strength below 100 °C
- Separated liquid binder

TYPICAL APPLICATIONS

- Urgent need of repair and restart of operation
- Energy reduction during heat up
- Difficult heta-up conditions
- Longer shelf life required

- 1 Green Taphole Clay
- 2 «GreenLine» castables
- 3 LCS castavles for BF runners
- 4 Modular Hearth Shield

#WeAlsoMakeTomorrow


MODULAR HEARTH SHIELD (MHS)

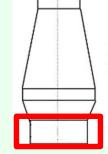
BF Hearth Reconstruction / Renewal

A way to re-build the hearth, protect new C-blocks, using a **PRE-SHAPED STRUCTURE**, extend their technical service life, thus increase the expected campaign life of the BF, increasing the energy saving of the system.

Starting point:

- New blast furnace commissioning (sometimes with lifeguarantee issues)
- Complete hearth renovation
- Availability of new Carbon blocks
- No time issues for production and delivery of the goods

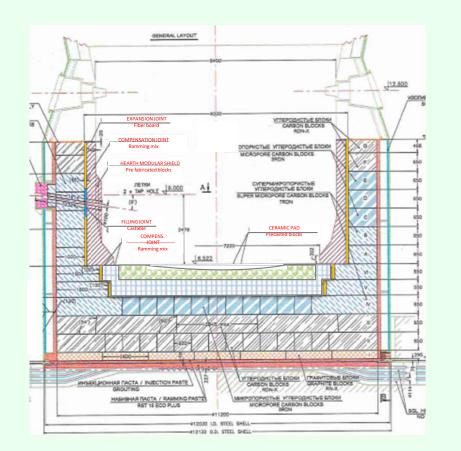
TATA STEEL #WeAlsoMakeTomorrow



MODULAR HEARTH SHIELD (MHS)

- DURABILITY MHS offers a proven increase in the expected life of the hearth, therefore of the blast furnace as a whole
- RELIABILITY the highly associated technological content makes it to almost a must for every modern blast furnace
- SUSTAINABILITY guarantees an effective energy saving with high benefits extended over the whole iron and steel production process

Main features:


- Material installed at its most stable conditions → pre-casted & pre-dried blocks
- 4 different blocks layers (zoning concept)
- 4 specifically developed castables → based on the different BF stress factors
- Designed to resist the highest thermo-mechanical stresses
- Verified by Finite-Elements Method analysis (FEM)
- Detailed geometry, perfectly fitting to the underlying C-blocks lining → preassembly

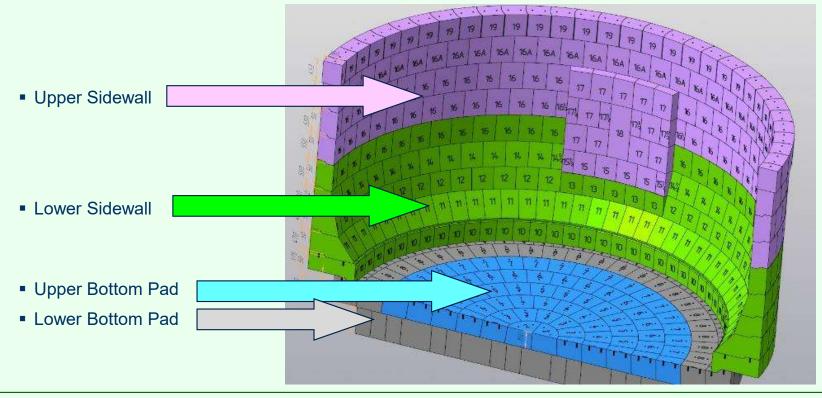
THE TARGET

- Protection of the Carbon Lining
- Contrast the erosion mechanism given by:
 - ✓ Oxidation
 - ✓ Corrosion by alkali
 - ✓ Disintegration by CO
 - ✓ Hot metal and slag penetration
 - ✓ Thermal stress
 - ✓ Dissolution due to hot metal and slag flow
- Adopt precast solutions, since it allows any geometry for the blocks, in terms of thickness, shapes and material quality distribution

THE DEVELOPMENT

Compound Alumina / Silica / Silicon Carbide + C has been selected because of its:

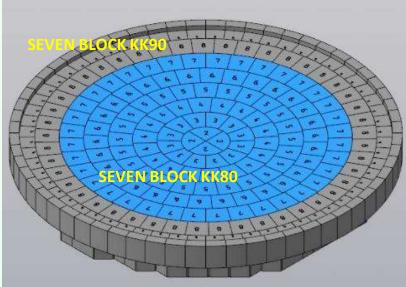
- High thermomechanical stability
- High thermal conductivity
- High hardness and fracture toughness
- Low thermal expansion coefficient
- High alkali and slag resistant
- High CO resistance


The SiC sensitivity to oxidation is not detrimetal for the lining, because the newly generated SiO2 will then react with the surrounding Al2O3, thus forming new Mullite.

The formed SiO2 glassy phase will also reduce the porosity, thus the possible infiltrations of liquid metals due to the capillarity effect into the matrix of the blocks.

MODULAR HEARTH SHIELD (MHS)

The **MODULAR HEARTH SHIELD** always consist of 4 layers:



MODULAR HEARTH SHIELD (MHS)

Materials for the **Bottom** layers:

- Based on a mix of Corundum / Mullite
- Different ratios because of major / minimal exposure to the molten products
- No Silicon Carbide

SEVEN BLOCK KK80

GENERAL INFORMATION			
Classification		Pre-casted ceramic block	
Raw material	Corundu	m-Mullite	
CHEMICAL ANALYSIS (for	the product)		
Al ₂ O ₃	81,0	%	
SiO ₂	16,0	%	
Na ₂ O	0,2	%	
Fe ₂ O ₃	0.6	%	
PHYSICAL PROPERTIES			
Bulk density	2,72	g/cm ³	
Apparent Porosity	13	%	
CCS of delivered block	75	MPa	

SEVEN BLOCK KK90

GENERAL INFORMATION			
Classification	Pre-cast	Pre-casted ceramic block	
Raw material	Corundu	Corundum	
CHEMICAL ANALYSIS (for	the product)		
Al ₂ O ₃	91,0	%	
SiO ₂	7,0	%	
Na ₂ O	0,1	%	
Fe ₂ O ₃	0,2	%	
PHYSICAL PROPERTIES			
Bulk density	2,90	g/cm ³	
Apparent Porosity	11	%	
CCS of delivered block	80	MPa	

SEVEN BLOCK KK8010

GENERAL INFORMATION				
Classification	Pre-cast	Pre-casted ceramic block		
Raw material	Corundu	Corundum-Silicon carbide		
CHEMICAL ANALYSIS (for	the product)			
Al ₂ O ₃	80.0	%		
SiO ₂	7.0	%		
SiC	10.0	%		
Na ₂ O	0,3	%		
Fe ₂ O ₃	0,2	%		
PHYSICAL PROPERTIES				
Bulk density	2,80	g/cm ³		
Apparent Porosity	13	%		
CCS of delivered block	70	MPa		

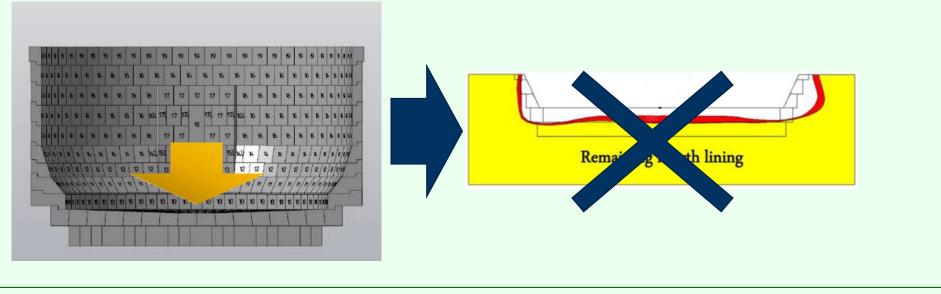
SEVEN BLOCK KK7505

GENERAL INFORMATIO	ON	b		
Classification	Pre-cast	Pre-casted ceramic block		
Raw material	Corundu	Corundum-Mullite-Silicon carbide		
CHEMICAL ANALYSIS	(for the product)			
Al ₂ O ₃	75,0	%		
SiO ₂	15,0	%		
SiC	5,0	%		
Na ₂ O	0,2	%		
Fe ₂ O ₃	0,6	%		
PHYSICAL PROPERTIE	is .			
Bulk density	2,70	g/cm ³		
Apparent Porosity	13	%		
CCS of delivered block	70	MPa		

MODULAR HEARTH SHIELD (MHS)

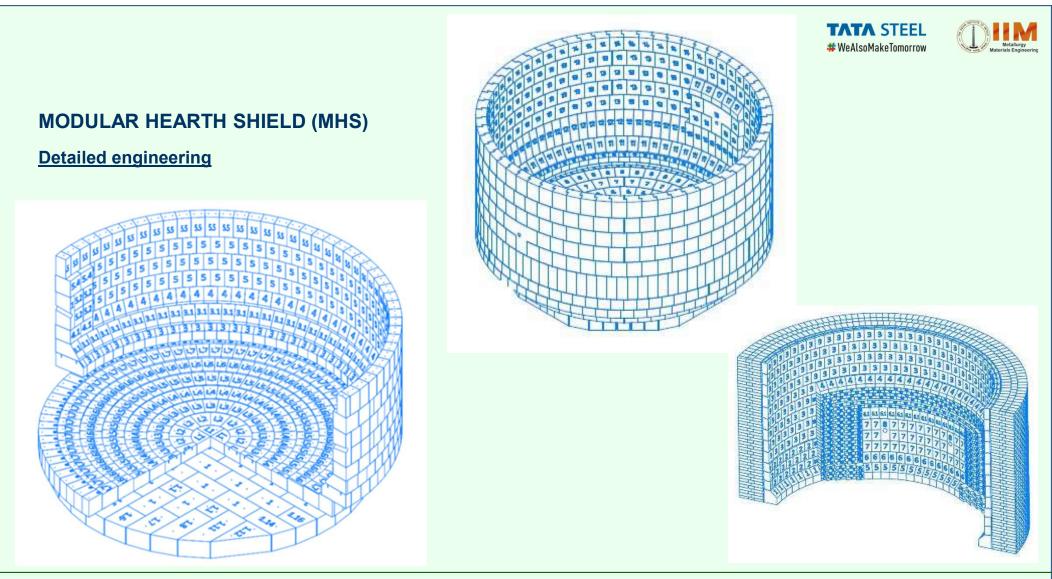
Materials for the **Sidewall** layers:

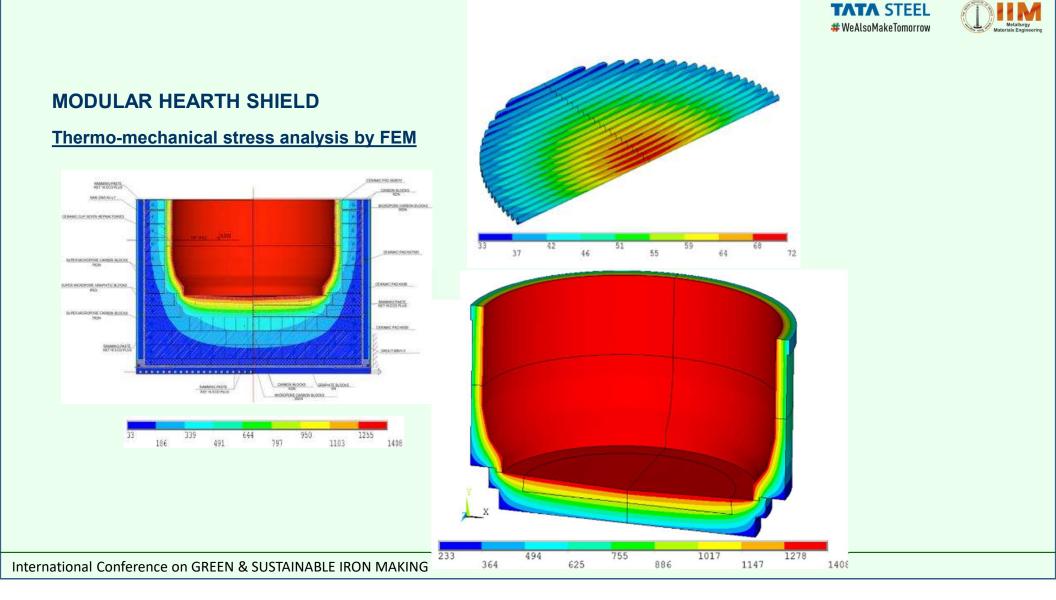
- Based on pure Corundum, mix of Corundum / Mullite
- Different composition, different content of SiC due to exposure to the molten products with different features


TATA STEEL # WeAlsoMakeTomorrow

MODULAR HEARTH SHIELD

A specific geometrical solution


The concavity of the upper bottom pad, with its central "bowl shape", is designed to force the hot metal mass transfer towards the center of the bottom, thus preventing premature formation of the typical "elephant foot" wear pattern of the BF hearth bottoms, and improve the dead man permeability by reducing the peripheral flow of the molten products.



Large number of quality tests performed on the materials/blocks during development, to achieve a complete characterization of the product:

 Pore size distribution 	ISO 15901-1 (DIN EN 66 133)
 Alkali resistance 	DIN 51069
Linear thermal expansion	EN 993-19
 Refractoriness Under Load (RUL) 	ISO 1893
 Creep test in Compressions 	ISO 3187
Dynamic Hot Metal Resistance	
(Induction Furnace Test)	CEN/TS 15418: 2006
 Static Slag Resistance (Cup Test) 	DIN 5109
 Gas Permeability 	DIN EN 993-4
 Thermo-Mechanical Stress Analysis 	Finite Elements Method (FEM)

Pre-fabrication

Installation

CASE STUDY RESULTS - MMK BF9, Magnitogorsk, Russia,

Based on customer observations, the installed Modular Hearth Shield has shown to be able to:

- Reduce the mechanical tension on BF hearth, both on carbon blocks and shell.
- Increase the distance between the iron freezing line and the shell, therefore improving the safety of the lining.
- Reduce the energy losses of over 70% in new conditions, and of about 30% once worn, compared to a merely carbon lining.

References

N.	Year	Country	Customer	Location	BF	Size
1	2020	Russia	ММК	Magnitogorsk	BF2	WV 1.013 m3
2	2020	Russia	Tulachermet	Tula	BF1	WV 2.000 m3
3	2022	Russia	ММК	Magnitogorsk	BF9	WV 2.000 m3
4	2025 (in planning)	Russia	Tulachermet	Tula	BF3	WV 2.000 m3

Get in touch

Giuliano Copetti AMS – Alumina Monolithic Solutions Business Development India, South Africa and South America

M +1(419) 271-6853 +386 41 355 610 E Giuliano.Copetti@rhimagnesita.com