TATA STEEL Developments of TATA STEEL Top Gas Recycle Blast Furnace For Green and Clean Steel Production

ULCOS-BF developments in Europe

17 January 2024

ICGSI

ir. Jan van der Stel

Together we make the difference

17-18 January 2024 International Conference Green & Sustainable Ironmaking

TGRBF: European project sponsored by the EU (2004 – 2014)

- Introduction
- Ultra Low CO2 Steelmaking: ULCOS
- Top Gas Recycle Blast Furnace concept (TGRBF)
- ULCOS BF Developments
- Demonstration of the ULCOS BF process concept at pilot scale
- ULCOS BF Experimental Blast Furnace results
- CO2 emission reduction
- Next Step and conclusion

Introducion

An integrated steel mill has numerous facilities to come from ore and coal to steel products

Main CO₂ emitters

Blast Furnace main input & outputs

17-18 January 2024 International Conference Green & Sustainable Ironmaking

ULCOS – Ultra Low CO2 Steelmaking

- Reducing number of Blast furnaces in Europe
- Increasing productivity
- Increasing CO₂ concentration in the atmosphere
- Close to theoretical minimum regarding reducing agents
- Blast Furnace is main producer of CO₂ within integrated steel works
- Small possibilities to reduce CO₂ emissions with existing blast furnace operation

ULCOS – Ultra Low CO2 Steelmaking

- Program launched in 2004
- 48 companies including all major steel producers from 15 European countries
- Aim to reduced CO₂ emissions by more than 50%
- Breakthrough technologies
 - ULCOSBF: TGRBF
 - HISARNA
 - ULCORED
 - ULCOWIN/ULCOLYSIS
- Phase 1 ended in 2010
- Cooperation ended in 2014

ULCOS – Process routes

- Revamped Blast Furnace / DR
- Brownfield / Greenfield
- CCS technology
- Carbon lean electricity

The ULCOS project objective

Modification of the

conventional blast furnace

to reduce the CO2 emission

by 50 % per ton of steel

How can CO₂-emission from blast furnace be reduced?

- 1st Recycling of CO/H₂ from blast furnace top gas
- 2nd Application of Capturing and Storage of CO₂
- 3rd Use of biomass as a CO₂ neutral carbon source
- 4th Substitution of CO by H₂ as reducing agent
- 5th Use of C-lean DRI, HBI or LRI
- 6th Use of C-lean electrical energy

History of alternative blast furnace processes

TGR BF Concept

The ULCOS Top Gas Recycle Blast Furnace Concept

The ULCOS Blast Furnace

Benefits

- 25 % less carbon usage
- $60 \% CO_2$ reduction with CO_2 storage application
- 35 % coke rate reduction
- Productivity increase

ULCOS TGRBF Developments

Tests prior to the Experimental Blast Furnace campaign

- Recirculation of blast furnace top gas
- VPSA/PSA operation + CCS
- 3 different ULCOS-BF concepts developed
- Injection of decarbonated top gas
 - Shaft (Version 1 & 4)
 - Tuyeres (Version 1,3 &4)
 - Temperature
- Mathematical modelling to find process with highest carbon saving potential
- Process modelling according to data from a commercial European BF
- Laboratory testing

Tests prior to the Experimental Blast Furnace campaign

	Version 1	Version 3	Version 4
Gas temperature			
Shaft tuyeres	900°C		900°C
Hearth tuyeres	25°C	1200°C	1200°C
Gas distribution			
Shaft tuyeres	80%		Optimized according to process
Hearth tuyeres	20%	100%	procee
Concerns	Small raceways	PCI combustion at	Effect and position of
	Tuyere design	low RAFT	shaft injection
Calculated c-savings (%)	21	25	26
version 3	}	5m 7m 9m 	11m 13m

17-18 January 2024 International Conference Green & Sustainable Ironmaking

Developments Behaviour of existing raw materials

Developments Raceway conditions and tuyere design

Temperature distribution in the tuyere and raceway region (version 4)

Lance design for coal and oxygen injection

Test results at the Teesside single tuyere rig

Preparations prior to the TGR Blast Furnace trials

- Extensive **HAZOP** studies
- Erection of an **PSA/VPSA** plant on site by Air Liquide
- Modification of existing EBF equipment

- Installation of new equipment at EBF
- *Simulated* TGRBF operation using cold nitrogen
- Training of personnel

Top Gas Recycle **Blast Furnace** Campaigns at EBF in Luleå

LKAB Experimental Blast Furnace: EBF

36 tHM/day

~540 kg/tHM

1,2 barG

1200°C

21-40%

Coal, oil, gas, etc.

Production: Fuel rate: Injectants: Top pressure: Blast temperature: Oxygen in blast:

Tuyeres:3Hearth diameter:1,2 mWorking volume:9 m³

Flexible sampling possibilities

- In-burden probes
- Basket samples
- Quench and Excavation

The Top Gas Reclyce Blast Furnace concept at EBF in Luleå

Operating trials 25/09 02/1017/10 08/11/07 K-20 REFERENCE **VERSION 3 VERSION 4 (1100 °C)** B&Q 16/10 28/10 12/1124/11/09 **K-23** REFERENCE **VERSION 3 VERSION 1** 18/10 03/12/10 27/10**K-25** REFERENCE VERSION 4 (900 °C) B&Q

Quench alone

- 3 TBR BF trials operated at the EBF in 2007, 2009 and 2010
- Varied BF operation tested:
 - Amount of recirculated gas;
 - Coal injection (130 and 170 kg/tHM);

Baskets & Quench

- Distribution (70% SSAB-Ruukki sinter / 30% LKab pellets);
- Temperature;

B&Q

- Quenching and excavation of the blast furnace shaft after each campaign;
- Process evaluation of blast furnace and VPSA/PSA unit
- Metallurgical and mechanical testing of burden material samples

900°C

1200°C

1200°C

ULCOS BF EBF Results

Blast Furnace and VPSA results

- No safety issue recorded.
- The EBF operation was very smooth :
 - constant productivity (production was not an aim)
 - smooth burden descent
 - good hot metal quality
 - high thermal stability
 - nearly no equipment failure
 - BF recovery after shut-downs was easy
- VPSA operated without any failure and with the required gas quality:
 - Recycling ratios up to 90% were possible;
 - It always provided the required gas amount and the required gas quality ($CO_2 < 3\%$);
 - The CO recovery was 88 %.
- Good connection between EBF and VPSA

Evaluation of process and equipment Excavation of the Experimental BF

Reduction profile:

- center working furnace;

Similar behavior as in conventional BF:

- Strength index shows linear trend with reduction degree;
- Sinter disintegration.

Sinter samples

Pellet samples

Reduction degree of sinter and pellet samples north-axis

Evaluation of process and equipment

K-20 results: reductant rate, recycled gas injection and carbon saving

17-18 January 2024 International Conference Green & Sustainable Ironmaking

Evaluation of process and equipment

K-23 results: reductant rate, recycled gas injection and carbon saving

Reductant Saving K-23

ГАТА

Evaluation of process and equipment K-25 results: reductant rate, recycled gas injection and carbon saving

Reductant saving K25

33

Version 4

CO₂ Emission Reduction

BF Results: Carbon input and gas injection

BF Results:
Carbon saving
(%)Version 1Version 3Version 4Carbon saving
(%)202324Recycling ratio
(%)858790

The <u>carbon savings</u> are:

- In terms of (coke + coal):
 up to 140 kg/tHm
- In terms of carbon:
 up to 129 kg/tHm
- In terms of coal and coke usage: up to 24% reduction
- Results in agreement with model calculations

CO₂ emission reduction

- Reduced emissions by 23% in version 4 for EBF case
- Evaluation of VPSA/PSA + CCS indicates possible reduction of CO_2 emissions by up to 50%

Scale to industrial

Scale up to industrial

The campaigns showed the possibilities of the Top Gas Recycling Blast Furnace for:

- Industrial operating point
- Safe closed loop operation
- Gas preheating
- Top gas de-CO₂
- Thermal control
- Reduction of ores in the shaft
- Low coke rates

Special attention for:

- Tuyere technology (product gas + Oxygen + Coal)
- Shaft gas injection, distribution of gas over radius
- Product gas heating

Conclusion

Conclusions ULCOS TGR BF Developments

- It has been possible to apply the Top Gas Recycling Blast Furnace process concept at the EBF;
- No <u>safety issue</u> has been recorded with the new process;
- The EBF and VPSA operations were smooth with good results;
 - High recycling ratios;
 - Closed loop operation;
 - Gas quality according to set values.
- Three different blast furnace concepts has been developed;
- Achieved results close to modelled expected values
- The Carbon savings were up to 24 %;
- The VPSA plant was able to remove CO₂ efficiently from BF topgas;
- Campaigns showed that conventional burden material can be used;
- Calculations for industrial applications indicate that a reduction of CO₂ over 50%/tHRC could be achievable;
 - Future: Demonstrator plant on industrial scale for version 4 on a full Production Blast Furnace

saarstahl

Thanks to:

The European Commission for its financial support.

The Ulcos TGR-BF team For more info on Ulcos: WWW.ulcos.org

PAUL WURTH

TATA STEEL

and in the maintenance

Thank you for your attention.

Together we make the difference