

Presents

International Conference on

GREEN & SUSTAINABLE IRON MAKING

January 17 – 18, 2024

Title of Paper: Future of green ironmaking using BF/BOF route Presented By: Peter Kinzel

Future feedstock challenges of green steel

DR pellet availability

End-of-life scrap availability

- Limited availability Limit
- Growing demand
- High premium

- Limited availability
- Growth in demand
- Contaminated scrap (Cu)

Green electricity availability

- Unequal availibility of sun, wind & free usable land
- High cost & scope 2 emissions in some regions

Hydrogen availability

- Unequal green hydrogen production cost
- Immature supply chain
- Small volumes, high costs

Need for FLEXIBLE ORE SOLUTION

Need for PRIMARY STEELMAKING

Need for
POWER AUTONOMY

Need for **FLEXIBLE H2 USAGE**

Indian iron ore

"Indian hematite ... can have higher percentage of alumina (Al2O3 up to 7%)..." – Indian Bureau of Mines (ibm.gov.in)

Indian medium-low grade ores in EAF:

- > Al2SO3 is an acid gangue! EAF Basicity B3 ~ 2
 → higher lime requirement
- > Increased slag rate \rightarrow increased FeO losses
- > Higher electric energy consumption
- > Higher electrode erosion
-) Increased tap to tap time \rightarrow Lower productivity

- Indian Bureau of Mines (ibm.gov.in)

Current steel plant configuration

First decarbonisation step

Shaft injection

- ✓ **Thermal energy input** for endothermic reactions & heating
 - \rightarrow increased topgas temperature
 - \rightarrow more HBI/scrap charging possible
 - \rightarrow more auxiliary fuel (H2,CH4,COG,...) with O₂ at tuyere possible
- ✓ Reducing gas input \rightarrow less coke consumed for iron ore reduction
- \checkmark Pushing bosh gas towards furnace centre \rightarrow reduced wall-channeling

-32% CO₂ COG, H₂, pellet, HBI/scrap

First decarbonisation step

Patent pending

EASyMelt™ features

- > Net-zero carbon
- > Lowest OPEX

TATA STEEL

#WeAlsoMakeTomorrow

> Lowest CAPEX

Integrated into existing steel plant Stepwise **low risk** approach

- > Energy & ore flexibility
- > Waste recycling in sinter possible
- > High production rate & quality

TATA STEEL

#WeAlsoMakeTomorrow

EASy/elt - Electrically Assisted Syngas sMelter

Key changes

Byproduct flow

Sinter plant

Maintain unique advantages :

- flexible utilisation of low cost iron ore grades
 (no vulnerability to high pellet premium prices)
- integration of steel plant by-products

Decarbonize with biomass:

- Integrated pyrolysis plant <u>co-located</u> with a <u>steel plant</u> can provide biochar and also bio-fuelgas
- Distributed pyrolysis plant <u>co-located</u> with an <u>iron ore mine</u> can provide biomass & ore together as green sinter feed mixture

Green sinter feed mixture = economical transport vehicle & CO2 lean sinter feed material No "pure" charcoal import

Reduced INFLAMMATION RISK

Biomass Pyrolysis Plant

High added value application needed:

- > Sinter Plant: energy & enabler for recycling and standard ore usage
- > EAF: energy & enabler for nitrogen removal and slag foaming

SMS solution: Integrate by-product energy into steel plant

> Reforming of permanent gas & condensables

to produce a easily transportable bio-fuelgas, which is similar to BOF gas

TorrCoal / Perpetual Next Rotary drum technology (small size feedstock)

Carboval Shaft technology (lumpy feedstock)

Pilot installation for by-products valorisation

Coke oven plant

Low coke rate BlueBF/EASyMelt:

> Reduced coke demand \rightarrow reduced emissions at coke plant

Solutions for future:

- Coke dry quenching → improved coke quality, reduced emissions, reduced coke plant visibility, water savings, heat recovery
- ➤ Charging system improvements → Smokeless controlled charging system,
 SOPRECO[®] system emission reductions
- > **Doors and bracing system** \rightarrow Emission free doors, door and frame cleaners
- → Controlled combustion → Advanced combustion system, COKEXPERT[™]
- → Machine features → Onboard dedusting, Pushing Emission Control System

TATA STEEL

WeAlsoMakeTomorrow

Principle of coke dry quenching

PW SOPRECO

Conclusion

Holistic decarbonization & modernization of integrated steel making is key to maximize process efficiency and environmental sustainability

