Towards Reducing Carbon Emission Through Tuyere Injections in Blast Furnace – A RAFT-RIST Approach

International Conference on Green and Sustainable Iron Making

Dr. Viswanathan N Nurni Sajjan Jindal Steel Chair Professor & Head

Metallurgical Engineering and Materials Science Professor In-Charge Centre of Excellence in Steel Technology IIT Bombay 17th Jan, 2024

Indian Steel Sector Current Picture

Source: JPC; *Provisional, January-December, 2022

TATA STEEL # WeAlsoMakeTomorrow

Crude steel production goal

Final figures are based on average of the four approaches outlined adjacently

 Indian steel production is expected to grow strongly at 8.1% CAGR 2022-30.

- Steel industry contributes 2% in overall GDP of India.
- Steel industry employing more than 2 million people directly & indirectly.

WeAlsoMakeTomorrow

Emission from steel plant's

Source: SteelZero: India Net Zero Steel Demand Outlook Report, https://theclimategroup.org

International Conference on GREEN & SUSTAINABLE IRON MAKING

TATA STEEL # WeAlsoMakeTomorrow

Challenges & Opportunities

- Energy Sector
- Raw Materials Iron Ore, Fuel/Reducing Agent
- ➢ Processes
- Engineering Expertise and Pilot Plants
- ➤ Man Power

Additionally, Land and Water also Pose Huge Challenges

International Conference on GREEN & SUSTAINABLE IRON MAKING

TATA STEEL # WeAlsoMakeTomorrow

Energy Sector

Materials Requirements to Build Different Energy Machines

Thermodynamics –

- Every Energy Conversion comes with a factor of Efficiency
- Mineral Resources needed for the transition is huge

Developed countries to overshoot carbon emissions goal: study The U.S., Russia and EU will be responsible for 83% of the projected overshoot, according to a CEEW study; developed countries were able to meet their 2020 targets largely due to COVID-19 lockdowns

October 30, 2023 01:20 am | Updated 01:19 pm IST - NEW DELHI

https://ourworldindata.org/electricity-mix

https://www.iea.org/data-and-statistics/charts/changes-in-share-of-power-generation-in-india-in-the-stated-policies-scenario-2010-2040

Chart Manhattan Institut

International Conference on GREEN & SUSTAINABLE IRON MAKING

#WeAlsoMakeTomorrow

Blast Furnace – The Most Efficient Reactor

- > Operates close to Thermodynamic Efficiencies (Second Law)
- ➢ Very efficient Heat Transfer
- \succ High productivity Flexible as well
- > Has stood tall and reinvented itself when other iron making processes challenged it
- > Expected to remain tall and possibly will reinvent itself for at least another two decades

Tuyere Injection Management through RAFT

Basic Idea

Use of Cheaper Fuel/Reductant Increase Hydrogen input to the furnace to aid Reduction in Carbon Emission Increase Production

- Pulverized Coal
- Moisture
- > Any other Hydrocarbons such as Natural Gas, Coke Oven Gas, Plastics, etc.
- \succ Can inject H2 as well
- Managed through Oxygen Enrichment

Carbon gives Energy (CO formation) – Reducing Agent (CO to CO2)

H2 cannot provide Energy, only Reducing Agent

The Blast Furnace is a highly efficient thermodynamic reactor

International Conference on GREEN & SUSTAINABLE IRON MAKING

TATA STEEL #WeAlsoMakeTomorrow

Methodology adopted for current study

- Iterative optimization between RIST and RAFT model
- Establish impact of tuyere input agents on ore reduction

ExonMobil

Example analysis

PCI – 100 kg; Blast Temp – 1200 °C; Blast Moisture – 8 kg; Al₂O₃ : SiO₂ – 0.7

Key points:

- RAFT Need to maintained above a critical value (1950°C has been chosen for the study)
- Top Gas Temperature Has to maintained above critical value (100 °C has been chosen for the study)
- For a given NG input, increasing Oxygen increases RAFT, but decreases top gas temperature
- Limited window of operation
- Gives the maximum NG input

ExonMobil

Effect of Pellet Proportion on the Maximum NG input

2. Effect of H₂ injection on coke rate –

14

3. PCI rate to maintain base-case coke rate –

Effect of PCI rate on carbon emissions at max. H₂ injection –

5. Effect of H₂ injection on productivity –

PCI rate fixed at 200 kg/THM

WASTE PLASTIC INJECTION SIMULATIONS

Decreasing PCI rate at maximum PE injection increases the total carbon rate (and hence, carbon emissions)!!

3. Effect of PE injection on

PE injection increases productivity for a given RAFT..

Blast furnace Simulator (BlaSim)

-A 2-D Process Model of Blast Furnace a Simulation Tool Developed using open source CFD Tool Open FOAM

- > Can understand the movement of cohesive zone with varying operating parameters
- > Different tuyeres injection can be studied
- > Being modified to take care of shaft injections

TATA STEEL

To Summarize

Blast Furnace shall Continue for Another 2 decades or more

> RAFT-RIST Model can be easily used to arrive at the Injection Parameters towards CO2 Reduction

Engineering challenges can be addressed through a combination of CFD based Simulation Tools and Laboratory Level Experimentation Well Instrumented Experimental Blast Furnace

Pilot Plants

- Industries, academic institutions, R&D laboratories, Organizations with Design & Engineering Expertise, etc. with the support of Government needs to
- Utilize the Existing Pilot Plant Facilities
- Create New Pilot Facilities
 - Consortium mode could be the way forward
 - Having a neutral custodian of such facilities is preferable.
 - if not used, can be thought of as a production facility
 - With a sustainable business model.
 - Collaboration among competitors till the innovation comes to a particular TRL level and further individual organization(s) may take it forward.
- We have engineering and design expertise scattered around the country. We need to bring them together towards creation of these pilot plant facility

