

HIsarna Ironmaking process Koen Meijer, Research & Development, Tata Steel Europe

International Conference on GREEN & SUSTAINABLE IRON MAKING

January 17 – 18, 2024

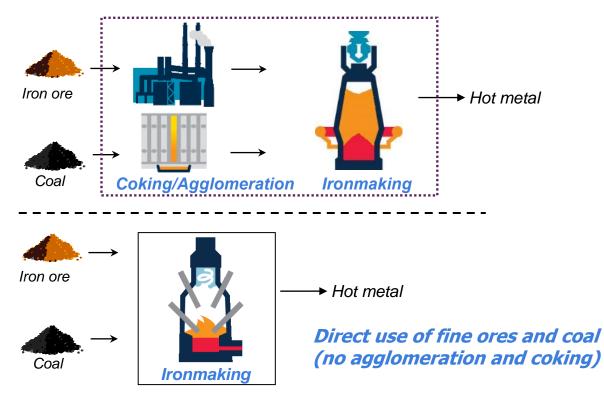
Agenda

- 1. History of HIsarna technology
- 2. HIsarna process concept
- 3. HIsarna development status
- 4. HIsarna and sustainability
- 5. Scale up
- 6. Conclusions

1. History of HIsarna technology

HIsarna is merger of two technologies:

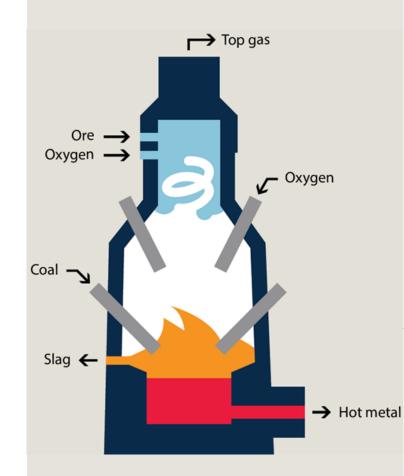
- HIsmelt development, Germany and Australia, Leading party Rio Tinto
- CCF development, Netherlands, Leading party Tata Steel Europe


ulcos

Milestones

- 2008 HIsarna development started under EU project "ULCOS (Ultra Low CO₂ Steelmaking)
- 2011 HIsarna pilot plant located at Tata Steel Europe site in the Netherlands
- 2017 Tata Steel acquired patent portfolio from Rio Tinto
- 2018 Pilot plant expanded with raw material preparation and new control system
- 2020 Demo plant conceptual study started, location Jamshedpur

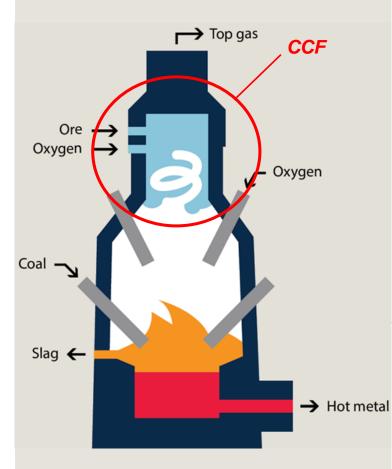
2. HIsarna process concept


Comparison BF route - HIsarna

2. Process concept

Ironmaking in one single step

- No coke ovens
 Direct use of fine coal
- No agglomeration Direct use of fine ore
- No stoves
 Use of pure oxygen



2. Process concept

Two stages in a single reactor

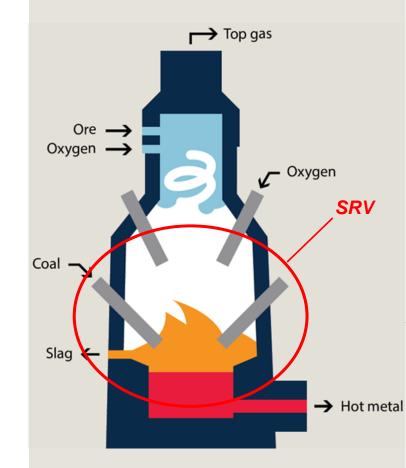
- Cyclone Converter Furnace (CCF)
 - Melting of fine ores
 - Pre-reduction
 - Final combustion of process gas $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$

 $Fe_2O_3 + CO \rightarrow FeO + CO_2$

2. Process concept

Two stages in a single reactor

- <u>Cyclone Converter Furnace (CCF)</u>
 - Melting of fine ores
 - Pre-reduction
 - − Final combustion of process gas $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$


 $Fe_2O_3 + CO \rightarrow FeO + CO_2$

 $FeO + C \rightarrow Fe + CO$

 $2C + O_2 \rightarrow 2CO$

 $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$

- <u>Smelting Reduction Vessel (SRV)</u>
 - Final reduction of iron oxides
 - Gasification of coal
 - Partial post combustion of gas
 - Carburisation of hot metal
 - Separation of metal and slag

3. HIsarna development status

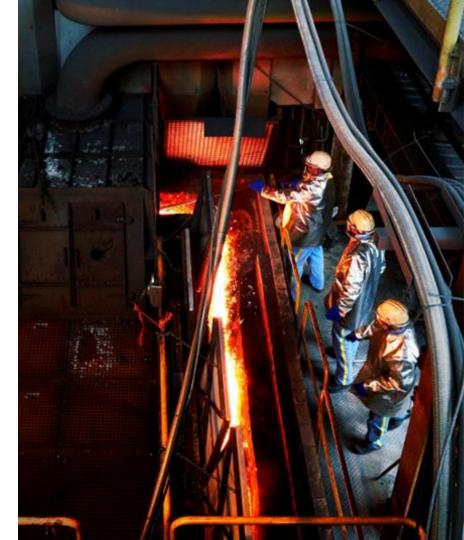
HIsarna pilot plant

- Design capacity, 8 ton hot metal per hour
- Full continuous operation in 5-shift schedule
- Dedicated raw material drying and storage
- Hot metal tapping in torpedo cars, metal to BOS plant
- Meets environmental regulations, de-SOx and de-NOx installations
- Fully instrumented for operation and research purposes
 - Various gas analysis systems
 - Bath level measurements
 - On-line metal and slag weighing systems

HIsarna pilot plant

Safety systems

- Warning and trip levels determined for main process parameters
- All cooling members monitored for temperature, water flow and heat flux
- Off gases monitored for O₂ and CO concentrations
- Leak detection system developed for closed water cooling system
- In case of trip the process is automatically steered to safe process conditions


Pilot plant operation

Hot metal

- Hot metal is continuously tapped from the pilot furnace at a temperature of 1400-1425°C
- Composition
 - C 4.2 %
 - P 0.01 %
 - S 0.08 %
 - Si 0.05 %
- Extremely low P in metal due to higher FeO in the slag (compared to BF)

Slag

- Slag is tapped through a separate taphole every 2 3 hours
- Basicity 1.15 1.25
- FeO 4 6 %

4. HIsarna and Sustainability

1. Use of non-fossil carbon

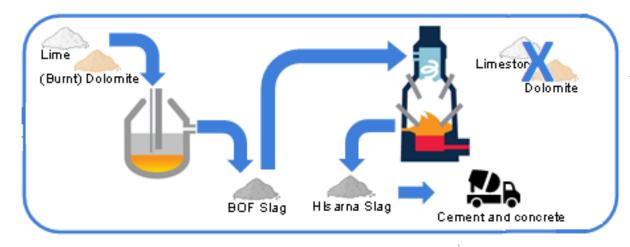
- No coking coal required
- Use of pyrolyzed biomass (bio-coal or char) possible

2. Circularity

- Recycling of steelmaking slag and waste oxides
- Can use lower grade raw materials (avoidance of mining waste)

3. CO_2 capture

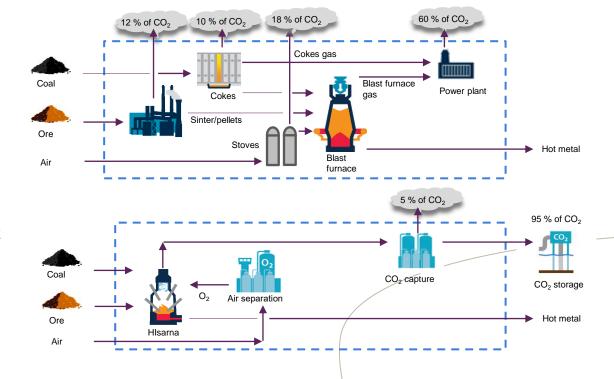
 Nitrogen free process gas, high CO₂ concentrations well suited for CO₂ capture


4.1. Use of bio-char

- Trial with 50 % fossil carbon replacement by biochar has been successfully carried out in the pilot plant
- Trial with 100 % fossil carbon replacement is planned for this year

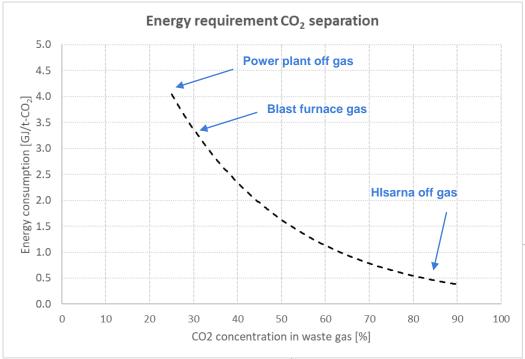
4.2. Circularity

- Low-grade iron ore (< 50 % Fe) successfully used in HIsarna pilot plant
- Recycling trials in HIsarna pilot plant with..
 - BOS slag pre-mixed with iron ore as flux replacement
 - BOS scrubber sludge injected
 - Various process dusts briquettes and charged


Cement quality investigation

- Research together with Slag Institute and cement producer
- HIsarna slag granulated at pilot plant (wet granulation)
- Cement samples produced from HIsarna slag and tested
- Results so far show similar strength development as with BF slag

4.3. Capture of CO₂


- BF route: CO₂ emitted at several stacks
- CO₂ present in waste gas at low concentrations

 HIsarna: All CO₂ concentrated at a single stack, less capture installations

4.3. Capture of CO₂

- High CO₂ concentration in the off gas, lower capture costs
 - Lower capital costs
 - Lower energy costs

5. Scale up

HIsarna process consists of two integrated process steps, CCF and SRV

SRV

Scale up of the SRV is proven in the Hismelt plant in Molong, China

CO gas concentration

CO.Mass Fraction Contour 2 4.328e-01 3.895e-01 3.462e-01

> 3.030e-01 2.597e-01

2.164e-01

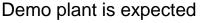
1.731e-01 1.298e-01

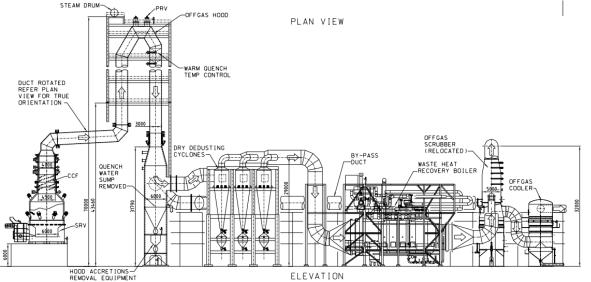
8.656e-02 4.328e-02 0.000e+00

5. Scale up

CCF

- Scale up is studied with a combination of computational models and physical models
- Physical model to study the mixing of fine iron ore injected into a cross flow was built at Tata Steel Jamshedpur and is presently operated
 - Range of ore sizes
 - Range of injection conditions
 - Behaviour of ore "plume" under different conditions
 - Mixing
 - Dust losses


Computational model



Sensitivity: general

Demo plant Engineering, Jamshedpur

- Conceptual engineering of a Demo plant, 700 900 kt/y, is completed
 - Location has been selected
 - Cost estimate has been made
- After completion of pilot plant program with iron ore from India, the go/no-go decision for a

6. Conclusions

- HIsarna is a breakthrough technology offering significant environmental and economic benefits.
- It allows significant CO₂ emissions reduction
 - Combined with CO₂ capture technology
 - By using renewable carbon from biomass
- It reduces dependance on scarce raw materials (coking coal and high-quality ores)
- It enables building a circular economy
 - Reducing waste of steelmaking, slag, dust and sludge
 - Reducing mining reverts

Do you have any questions?

Tata Steel Research & Development

Ironmaking, Steelmaking & Casting The Netherlands www.tatasteeleurope.com